Skip to main content
Log in

RBS and TEM studies of indium phosphide irradiated with 100 keV Au ions

  • Physics of Solid State and Condensed Matter
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Transmission Electron Microscopy (TEM) and Rutherford Backscattering (RBS) have been used to observe the spatially isolated disordered zones in InP resulting from 100 keV Au ion irradiation at room temperature. Studies were carried out in interval of irradiation fluences less than lower value of full amorphization fluence. Such a value of fluence, as was established in the studies, can be estimated of order ∼2.5 × 1013cm−2. The accumulation of damage due to the 100 keV Au ion irradiation was described in this material using a composite theoretical model accounting for both homogeneous and heterogeneous amorphization processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Jencic, E. P. Hollar, and I. M. Robertson, “Crystallization of Isolated Amorphous Zones in Semiconductors,” Philos. Mag. 83, 2557–2571 (2003).

    Article  ADS  Google Scholar 

  2. T. D. de la Rubia, “Irradiation-Induced Defect Production in Elemental Metals and Semiconductors: A Review of Recent Molecular Dynamics Studies,” Ann. Rev. Mater. Sci. 26, 613–649 (1996).

    Article  ADS  Google Scholar 

  3. J. R. Parsons, R. W. Balluffi, and J. S. Koehler, “Direct Observation of Neutron Damage in Germanium,” Appl. Phys. Lett. 1, 57 (1962).

    Article  ADS  Google Scholar 

  4. L. M. Howe and M. H. Rainville, “Heavy Ion Damage in Silicon and Germanium,” Nucl. Instrum. Methods Phys. Res. B 19–20, 61 (1987).

    Article  Google Scholar 

  5. J. Narayan et al., “High-Resolution Imaging of Ion-Implantation Damage and Mechanism of Amorphization in Semiconductors,” Mater. Lett. 2(3), 211–218 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  6. L. M. Howe and M. H. Rainville, “Features of Collision Cascades in Silicon as Determined by Transmission Electron Microscopy,” Nucl. Instrum. Methods Phys. Res. 182–183, 143 (1981).

    Google Scholar 

  7. M. O. Ruault et al., “High Resolution and In-situ Investigation of Defects in Bi-Irradiated Si,” Philos. Mag. A 50(5), 667–675 (1984).

    Article  ADS  Google Scholar 

  8. A. Yu. Didyk and V. S. Varichenko, “Track Structure in Dielectric and Semiconductor Single Crystals Irradiated by Heavy Ions with High Level Inelastic Energy Losses,” Nucl. Track Rad. Meas. 25(1–4), 119–124 (1995).

    Google Scholar 

  9. H. Bernas, M. O. Ruault, and P. Zheng, “Multiple Amorphous States in Ion Implanted Semiconductors Si and InP,” in Cruc. Iss. Semicond. Mater. Proces. Techn., Ed. by S. Coffa (Kluwer Acad., 1992).

  10. L. Chadderton, “Nucleation of Damage Centers during Ion Implantation of Silicon,” Rad. Eff. 8, 77–86 (1971).

    Article  Google Scholar 

  11. T. J. Chandler and M. L. Jenkins, “The Structure of Displacement Cascades in III-V Semiconductors,” Microscopy of Semicond. Mater., Ser. 67 (Inst. Phys. Conf., London, 1983).

    Google Scholar 

  12. M. L. Jenkins et al., “In-situ Observations of the Development of Heavy-Ion Damage in Semiconductors,” Microscopy of Semicond. Mater., Ser. 79 (Inst. of Phys. Conf., London, 1985).

    Google Scholar 

  13. P. Zheng et al., “In-situ Defect Studies on Si Implanted InP,” J. Phys. D 23, 877–883 (1990).

    Article  ADS  Google Scholar 

  14. M. O. Ruault, J. Chaumont, and H. Bernas, “Transmission Electron Microscopy Study of Ion Implantation Induced Si Amorphization,” Nucl. Instrum. Methods Phys. Res. 209–210, 351–356 (1983).

    Article  Google Scholar 

  15. I. Jencic and I. M. Robertson, “Low-Energy Electron Beam Induced Regrowth of Isolated Amorphous Zones in Si and Ge,” J. Mater. Res. 11(9), 2152–2157 (1996).

    Article  ADS  Google Scholar 

  16. I. Jencic, E. P. Hollar, and I. M. Robertson, “Electron-Induced Regrowth of Isolated Amorphous Zones in GaAs,” Nucl. Instrum. Methods Phys. Res. B 175, 197–201 (2001).

    Article  ADS  Google Scholar 

  17. I. M. Robertson and I. Jencic, “Regrowth of Amorphous Regions in Semiconductors by Sub-Threshold Electron Beams,” J. Nucl. Mater. 239(1–3), 273–278 (1996).

    Article  ADS  Google Scholar 

  18. M. W. Bench et al., “Production of Amorphous Zones in GaAs by the Direct Impact of Energetic Heavy Ions,” J. Appl. Phys. 87(1), 49–56 (2000).

    Article  ADS  Google Scholar 

  19. I. Jencic et al., “Computer Image Analysis of Shrinkage of Isolated Amorphous Zones in Semiconductors Induced by Electron Beam,” Nucl. Instrum. Methods Phys. Res. B 186, 126–131 (2002).

    Article  ADS  Google Scholar 

  20. I. Jencic and I. M. Robertson, “Regrowth of Heavy-Ion Implantation Damage by Electron Beams,” Mater. Sci. Semicond. Proces. 3(4), 311–315 (2000).

    Article  Google Scholar 

  21. I. Jencic, I. M. Robertson, and J. Skvarc, “Electron Beam Induced Regrowth of Ion Implantation Damage in Si and Ge,” Nucl. Instrum. Methods Phys. Res. B 148(1–4), 345–349 (1999).

    Article  ADS  Google Scholar 

  22. I. Jencic et al., “Electron-Beam-Induced Crystallization of Isolated Amorphous Regions in Si, Ge, GaP and GaAs,” J. Appl. Phys. 78(2), 974–982 (1995).

    Article  ADS  Google Scholar 

  23. M. L. Jenkins and M. A. Kirk, “Characterization of Radiation Damage by Transmission Electron Microscopy,” Ser. Microsc. Mater. Sci. (Inst. of Phys., London, 2001).

    Google Scholar 

  24. M. W. Bench, D. K. Tappin, and I. M. Robertson, “On the Suitability of the Down-Zone Imaging Technique to the Study of Radiation Damage,” Philos. Mag. Lett. 66(1), 39–45 (1992).

    Article  ADS  Google Scholar 

  25. AnalySIS®, Soft Imaging System, http://www.softimaging.net.

  26. J. F. Gibbons, “Ion Implantation in Semiconductors: II. Damage Production and Annealing,” Proc. Inst. Electr. Electron. Eng. 60(9), 1062–1096 (1972).

    Google Scholar 

  27. W. J. Weber, “Models and Mechanisms of Irradiation-Induced Amorphization in Ceramics,” Nucl. Instrum. Methods Phys. Res. B 166–167, 98–106 (2000).

    Article  Google Scholar 

  28. N. Hecking, K. F. Heidemann, and E. T. Kaat, “Model of Temperature Dependent Defect Interaction and Amorphization in Crystalline Silicon during Ion Irradiation,” Nucl. Instrum. Methods Phys. Res. B 15, 760–764 (1986).

    Article  ADS  Google Scholar 

  29. J. Nord, K. Nordlund, and J. Keinonen, “Amorphization Mechanism and Defect Structures in Ion-Beam-Amorphized Si, Ge, and GaAs,” Phys. Rev. B 65, 165329 (2002).

    Article  ADS  Google Scholar 

  30. C. Cohen et al., “Transformation to Amorphous State of Metals by Ion Implantation: P in Ni,” Phys. Rev. B 31, 5–14 (1985).

    Article  ADS  Google Scholar 

  31. E. Bezakova et al., “Implantation-Induced Amorphization of InP Characterized with Perturbed Angular Correlation,” Appl. Phys. Lett. 75(13), 1923–1925 (1999).

    Article  ADS  Google Scholar 

  32. P. Zheng et al., “Temperature Influence on the Damage Induced Si Implanted InP,” J. Appl. Phys. 70(2), 752–757 (1991).

    Article  ADS  Google Scholar 

  33. M. W. Bench, “Transmission Electron Microscopy Investigation of Ion Implantation Damage in GaAs and Other Semiconductors,” PhD Thesis (Univ. of Illinois at Urbana-Champaign, 1992).

  34. S. O. Kucheyev, “Amorphous Zone Evolution in Si during Elevated Temperature Ion Bombardment,” Nucl. Instrum. Methods Phys. Res. B 174(1–2), 130–136 (2001).

    Article  ADS  Google Scholar 

  35. E. Wendler et al., “Temperature and Dose Dependence of Damage Production in Si+ and Se+ Implanted InP,” Nucl. Instrum. Methods Phys. Res. B 106(1–4), 303–307 (1995).

    Article  ADS  Google Scholar 

  36. E. Wendler, T. Opfermann, and P. I. Gaiduk, “Ion Mass and Temperature Dependence of Damage Production in Ion Implanted InP,” J. Appl. Phys. 82(12), 5965–5975 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Khalil.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalil, A.S., Didyk, A.Y. RBS and TEM studies of indium phosphide irradiated with 100 keV Au ions. Phys. Part. Nuclei Lett. 6, 498–504 (2009). https://doi.org/10.1134/S1547477109060132

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477109060132

Keywords

Navigation