Skip to main content
Log in

Cavity generation and quasi-monoenergetic electron generation in laser-plasma interaction

  • Physics of Solid State and Condensed Matter
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Electrons cavity acceleration is one the relativistic regime to describe the monoenergetic electron acceleration. In this work, we introduce a new ellipsoid model that could be improved the quality of the electron beam in contrast to other methods such as that using periodic plasma wake field, spherical cavity regime and plasma channel guided acceleration. The trajectory of the electron motion can be described as hyperbola, parabola or ellipsoid path. It is influenced by the position and energy of the electrons and the electrostatic potential of the cavity. We have noticed that the electron output energy is not affected by the elongation of the transverse cavity radius in the ellipsoid regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Umstadter, J. Phys. D 36, R151 (2003).

    Article  ADS  Google Scholar 

  2. E. Gerestener, Nature 446, 16 (2007).

    Article  ADS  Google Scholar 

  3. K. Flippo et al., Laser Part. Beams 25, 3 (2007).

    Article  ADS  Google Scholar 

  4. B. M. Hegelich et al., Nature 439, 441 (2006).

    Article  ADS  Google Scholar 

  5. L. Yin et al., Laser Part. Beams 24, 291 (2006).

    Article  ADS  Google Scholar 

  6. M. Roth et al., Laser Part. Beams 23, 95 (2005).

    Article  ADS  Google Scholar 

  7. P. V. Nickles et al., Laser Part. Beams 25, 347 (2007).

    Article  Google Scholar 

  8. H. Ruhl et al., “The Generation of Images of Surface Structures by Laser-Accelerated Protons,” Laser Part. Beams 24, 181 (2006).

    Article  Google Scholar 

  9. R. Sadighi-Bonabi and O. Kokabee, Chin. Phys. Lett. 6, 1434 (2006).

    ADS  Google Scholar 

  10. C. Geddes et al., “Laser Guiding at Relativistic Intensities and Wakefield Particle Acceleration in Plasma Channels,” SciDAC Meeting (2004).

  11. V. Malka et al., Phys. Rev. ST-Accel. Beams 9, 091301-1 (2006).

  12. R. G. Hemker, Phys. Rev. ST-Accel. Beams 5, 041301-1 (2002).

    Google Scholar 

  13. L. Robson et al., Nature Phys. 3, 58 (2007).

    Article  ADS  Google Scholar 

  14. A. Karmakar and A. Pukhov, Laser Part. Beams 25, 371 (2007).

    Article  Google Scholar 

  15. W. P. Leemans et al., Nature Phys. 2, 696 (2006).

    Article  ADS  Google Scholar 

  16. Y. Glinec et al., Laser Part. Beams 23, 161 (2005).

    Article  ADS  Google Scholar 

  17. K. Koyama et al., Laser Part. Beams 24, 95 (2006).

    Article  Google Scholar 

  18. A. F. Lifschitz et al., Laser Part. Beams 24, 255 (2006).

    Article  ADS  Google Scholar 

  19. E. Esarey et al., Phys. Rev. Lett. 72, 2887 (1994).

    Article  ADS  Google Scholar 

  20. V. Malka et al., Science 298, 1596 (2002).

    Article  ADS  Google Scholar 

  21. P. Tomassini et al., Laser Part. Beams 22, 423 (2004).

    Article  ADS  Google Scholar 

  22. P. Zobdeh et al., Contrib. Plasma Phys. 48, 555 (2008).

    Article  ADS  Google Scholar 

  23. P. Zobdeh et al., China Phys. B (2009, in press).

  24. T. Hosokai et al., Phys. Lett. Rev. E 73, 036407-1 (2006).

  25. V. Malka et al., Phys. Rev. ST-Accel. Beams 9, 091301-1 (2006).

  26. J. Faure et al., Nature 431, 541 (2004).

    Article  ADS  Google Scholar 

  27. I. Kostyukov, A. Pukhov, and S. Kiselev, 11, 5256 (2004).

  28. S. Gordienko and A. Pukhov, Phys. Plasmas 12, 043109-1 (2005).

    Google Scholar 

  29. E. Esarey et al., IEEE Trans. Plasma Sci. 24, 252 (1996).

    Article  ADS  Google Scholar 

  30. A. Pukhov et al., Plasma Phys. Control. Fus. 46, B179 (2004).

    Article  Google Scholar 

  31. S. P. D. Mangles et al., Phys. Rev. Lett. 96, 215001-1 (2006).

  32. A. Pukhov et al., Appl. Phys. B 74, 355 (2002).

    Article  ADS  Google Scholar 

  33. Z. Chen, Laser Part. Beams 26, 147 (2008).

    Article  Google Scholar 

  34. P. Zobdeh et al., Plasma Dev. Oper. 16(2), 105 (2008).

    Article  Google Scholar 

  35. M. Ya. Amusia and Y. Kornyushin, Contemp. Phys. 41, 219–229 (2000).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Zobdeh.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zobdeh, P., Sadighi-Bonabi, R. & Afarideh, H. Cavity generation and quasi-monoenergetic electron generation in laser-plasma interaction. Phys. Part. Nuclei Lett. 6, 413–416 (2009). https://doi.org/10.1134/S1547477109050094

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477109050094

PACS numbers

Navigation