Skip to main content
Log in

Surface modifications by swift heavy-ion irradiation of indium phosphide

  • Physics of Solid State and Condensed Matter
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

InP (001) samples were irradiated with 200 MeV Au ions at different fluences. The surface nanotopographical changes due to increasing fluence of swift heavy ions were observed by Atomic Force Microscopy (AFM), where the onset of a large increase in surface roughness for fluences sufficient to cause complete surface amorphization was observed. Transmission Electron Microscopy (TEM) was used to observe bulk-ion tracks that formed in InP, and high resolution TEM (HRTEM) revealed that single-ion tracks might not be amorphous in nature. Surface-ion tracks were observed by AFM in the form of ill-defined pits (hollows) of ~12 nm in diameter (width). In addition, Rutherford backscattering was utilized to follow the formation of disorder to amorphization in the irradiated material. The interpretation of the large increase in surface roughness with the onset of amorphization can be attributed to the plastic phenomena induced by the change of states from crystalline to amorphous by ion irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. C. Srivastava, V. Ganesan, and O. P. Sinha, Nucl. Instrum. Methods Phys. Res. B 187(2), 20–230 (2002).

    Article  Google Scholar 

  2. P. C. Srivastava, V. Ganesan, and O. P. Sinha, Rad. Meas. 36, 671–674 (2003).

    Article  Google Scholar 

  3. P. C. Srivastava, V. Ganesan, and O. P. Sinha, Nucl. Instrum. Methods Phys. Res. B 222, 491–496 (2004).

    Article  ADS  Google Scholar 

  4. J. P. Singh et al., Nucl. Instrum. Methods Phys. Res. B 179, 37–41 (2001).

    Article  ADS  Google Scholar 

  5. J. P. Singh et al., J. Appl. Phys. 90, 5968–5972 (2001).

    Article  ADS  Google Scholar 

  6. R. L. Dubey et al., Nucl. Instrum. Methods Phys. Res. B 257, 287–292 (2007).

    Article  ADS  Google Scholar 

  7. S. Klaumunzer and G. Shumacher, Phys. Rev. Lett. 51, 1987–1990 (1983).

    Article  ADS  Google Scholar 

  8. M. Hou, S. Klaumunzer, and G. Shumacher, Phys. Rev. B 41(2), 1144–1157 (1989).

    Article  ADS  Google Scholar 

  9. M. J. Demkowicz and A. S. Argon, Phys. Rev. Lett. 93(2), 025505 (2004).

    Google Scholar 

  10. R. Bhadra, Phys. Rev. B 38, 12656–12659 (1998).

    Article  ADS  Google Scholar 

  11. C. A. Volkert, J. Appl. Phys. 70, 3521–3527 (1991).

    Article  ADS  Google Scholar 

  12. C. A. Volkert and A. Polman, Mater. Res. Soc. Symp. Proc. 235, 3–14 (1992).

    Google Scholar 

  13. H. Trinkaus and A. I. Ryazanov, Phys. Rev. B 74, 5072–5075 (1995).

    Article  ADS  Google Scholar 

  14. M. Chicoine et al., Phys. Rev. B 56, 1551–1560 (1997).

    Article  ADS  Google Scholar 

  15. L. Cliche, S. Roorda, and R. A. Masut, Nucl. Instrum. Methods Phys. Res. B 96, 319–322 (1996).

    Article  ADS  Google Scholar 

  16. L. Cliche, S. Roorda, and R. A. Masut, Appl. Phys. Lett. 65, 1754–1756 (1994).

    Article  ADS  Google Scholar 

  17. A. S. Khalil, JINR Preprint No. E14-27-173 (Dubna, 2007).

  18. A. Hedler, S. L. Klaumunzer, and W. Wesch, Nature Mater. 3, 804–809 (2004).

    Article  ADS  Google Scholar 

  19. T. van Dillen et al., Appl. Phys. Lett. 84, 3591–3593 (2004).

    Article  ADS  Google Scholar 

  20. P. Schmuki et al., Appl. Phys. Lett. 70, 1305–1307 (1997).

    Article  ADS  Google Scholar 

  21. C. Riedel and R. Spohr, Radiat. Eff. 42, 69–75 (1979).

    Article  Google Scholar 

  22. O. Herre et al., Phys. Rev. B 58, 4832–4837 (1998).

    Article  ADS  Google Scholar 

  23. J. F. Gibbons, Proc. Inst. Electr. Eng. 60, 1062–1096 (1972).

    Google Scholar 

  24. J. Colin, D. Lesueur, and J. Grilhe, Philos. Mag. A 81, 857–866 (2001).

    Article  ADS  Google Scholar 

  25. Glassy Metals II. Topics in Applied Physics, Ed. by H. Beck and H. J. Guntherdot (Springer, Berlin, 1983), Vol. 53.

    Google Scholar 

  26. V. V. Brazhkin et al., J. Non-Cryst. Solids 212, 49–54 (1997).

    Article  ADS  Google Scholar 

  27. J. L. Feldman, J. Q. Broughton, and F. Wooten, Phys. Rev. B 43, 2152–2158 (1991).

    Article  ADS  Google Scholar 

  28. M. D. Kluge and J. R. Ray, Phys. Rev. B 37, 4132–4136 (1988).

    Article  ADS  Google Scholar 

  29. C. Mathioudakis and P. C. Kelires, J. Non-Cryst. Solids 266–269, 161–165 (2000).

    Article  Google Scholar 

  30. V. V. Brazhkin, Phys. Rev. B 56, 990–993 (1997).

    Article  ADS  Google Scholar 

  31. L. R. Testardi and J. J. Hauser, Solid State Commun. 21, 1039–1041 (1977).

    Article  ADS  Google Scholar 

  32. R. P. Sharma et al., J. Appl. Phys. 66, 152–155 (1989).

    Article  ADS  Google Scholar 

  33. J. Zuk, H. Kiefte, and M. Clouter, J. Appl. Phys. 73, 4951–4954 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Khalil.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khalil, A.S., Chadderton, L.T., Didyk, A.Y. et al. Surface modifications by swift heavy-ion irradiation of indium phosphide. Phys. Part. Nuclei Lett. 5, 481–487 (2008). https://doi.org/10.1134/S1547477108050130

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477108050130

PACS numbers

Navigation