Skip to main content
Log in

Sol-Gel Synthesis of MgO–Al2O3–ZrO2–SiO2 Coatings on Quartz Ceramics

  • BRIEF MESSAGE
  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

In the work, the MgO–Al2O3–ZrO2–SiO2 coatings on the surface of quartz ceramics were prepared by sol-gel method. The synthesized materials were examined by X-ray phase and electron microscopic analyses. It is shown that composite gels retain an amorphous structure after thermal treatment at 600°C, and the formation and subsequent transformation of various oxide crystal phases is observed after calcination at temperatures above 900°C. The behavior of the thermal evolution of the structure of the obtained gels is generally similar to the course of structural changes occurring during glasses crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Ferrari, A.M., Barbieri, L., Leonelli, C., Manfredeni, T., Siligardi, C., and Corradi, A.B., Feasibility of using cordierite glass-ceramics as tile glazes, J. Am. Ceram. Soc., 1997, vol. 80, no. 7, pp. 1757–1766.

    Article  CAS  Google Scholar 

  2. Peng, C., Lv, M., Cai, J.-P., Peng, C., Ding, M.-J., and Wu, J.-Q., Cordierite glass-ceramic used for transparent tile glazes, J. Am. Ceram. Soc., 2017, vol. 100, no. 10, pp. 4402–4406.

    Article  CAS  Google Scholar 

  3. Torres, F.J. and Alarcón, J., Microstructural evolution in fast-heated cordierite-based glass-ceramic glazes for ceramic tile, J. Am. Ceram. Soc., 2004, vol. 87, no. 7, pp. 1227–1232.

    Article  CAS  Google Scholar 

  4. Evstropiev, S.K., Yurchenko, D.A., Stolyarova, V.L., Knyazyan, N.B., Manukyan, G.G., and Shashkin, A.V., Some features of the surface modification of MgO–Al2O3–TiO2–SiO2 glass and glass ceramics by Ag diffusion, Ceram. Int., 2022, vol. 48, no. 17, pp. 24517–24522.

    Article  CAS  Google Scholar 

  5. Yurchenko, D.A., Evstropiev, S.K., Shashkin, A.V., Knyazyan, N.B., Manukyan, G.G., and Stolyarova, V.L., Modification of the MgO–Al2O3–TiO2–SiO2 glass by silver diffusion for the formation of luminescent molecular clusters, Dokl. Chem., 2021, vol. 499, no. 2, pp. 159–162.

    Article  CAS  Google Scholar 

  6. Petrović, R., Janaćkocić, D., Zec, S., Drmanić, Ž., and Kostić-Gvozdenović, Lj., Crystallization behavior of alkoxy-derived cordierite gels, Sol-Gel Sci. Technol., 2003, vol. 28, no. 1, pp. 111–118.

    Google Scholar 

  7. Maeda, K., Mizukami, F., Miyashita, S., Niwa, S.-i., and Toba, M., Synthesis of cordierite by complexing agent-assisted sol-gel procedure, J. Chem. Soc., Chem. Commun., 1990, no. 18, pp. 1268–1269.

  8. Eskandari, M., Jahantigh, F., and Malekfar, R., Synthesis and characterization of nano pure α-cordierite glass-ceramic powders, J. Australas. Ceram. Soc., 2018, vol. 54, pp. 243–249.

    Article  CAS  Google Scholar 

  9. Kazakos, A.M., Komarneni, S., and Roy, A., Sol-gel processing of cordierite: Effect of seeding and optimization of heat treatment, J. Mater. Res., 1990, vol. 5, no. 5, pp. 1095–1103.

    Article  CAS  Google Scholar 

  10. Torres, F.J., de Sola, E.R., and Alarcón, J., Effect of some additivies on the development of spinel-based glass-ceramic glazes for floor-tiles, J. Non-Cryst. Solids, 2005, vol. 351, pp. 2453–2461.

    Article  CAS  Google Scholar 

  11. Casasola, R., Ma Rincón, J., and Romero, M., Glass-ceramic glazes for ceramic tiles: A review, J. Mater. Sci., 2012, vol. 47, pp. 553–582.

    Article  CAS  Google Scholar 

  12. Ghosh, S., Pal, K.S., Dandapat, N., Ghosh, J., and Datta, S., Glass-ceramic glazes for future generation floor tiles, J. Eur. Ceram. Soc., 2013, vol. 33, no. 5, pp. 935–942.

    Article  CAS  Google Scholar 

  13. Sfez, R., De-Botton, S., Avnir, D., and Wakshlak, P., Sol-gel glazes—A safe glass and ceramics coloring approach, J. Sol-Gel Sci. Technol., 2022, vol. 102, pp. 562–573.

    Article  CAS  Google Scholar 

  14. Bondioli, F., Taurino, R., and Ferrari, A.M., Functionalization of ceramic tile surface by sol-gel technique, J. Colloid Interface Sci., 2009, vol. 334, no. 2, pp. 195–201.

    Article  CAS  Google Scholar 

  15. Evstrop’ev, S.K., Volynkin, V.M., Shashkin, A.V., Gatchin, Yu.A., Dukel’skii, K.V., Korobeinikov, A.G., and Polyakov, V.I., Influence of quartz ceramics single-stage processing by gel-forming water solutions on its strength characteristics, Nauchno.-Tekh. Vestn. Inf. Tekhnol., Mekh. Opt., 2014, no. 5, pp. 46–51.

  16. Menchi, A.M. and Scian, A.N., Mechanism of cordierite formation obtained by the sol-gel technique, Mater. Lett., 2005, vol. 59, no. 21, pp. 2664–2667.

    Article  CAS  Google Scholar 

  17. Radev, L., Samuneva, B., Mikhailova, I., Pavlova, L., and Kashchieva, E., Sol-gel synthesis and structure of cordierite/tialite glass-ceramics, Process. Appl. Ceram., 2009, vol. 3, no. 3, pp. 125–130.

    Article  CAS  Google Scholar 

  18. Okiyma, M., Fukui, T., and Sakurai, C., Effect of complex precursors on alkoxide-derived cordierite powder, J. Am. Ceram. Soc., 1992, vol. 75, no. 1, pp. 153–160.

    Article  Google Scholar 

  19. Tsai, M.-T., Alkoxide sol-gel-processed cordierite fiber, J. Am. Ceram. Soc., 2002, vol. 85, no. 6, pp. 1637–1639.

    Article  CAS  Google Scholar 

  20. Adachi, T. and Sakka, S., The role of N,N-dimethylformamide, a DCCA, in the formation of silica gel monoliths by sol-gel method, J. Non-Cryst. Solids, 1988, vol. 99, no. 1, pp. 118–128.

    Article  CAS  Google Scholar 

  21. Gorelova, A.V., Evstropiev, S.K., Efremov, A.M., Konovalov, A.V., Petrovskii, G.T., Semenov, A.D., and Shashkin, V.S., Inorganic sol-gel synthesis of monolithic silica glasses with the use of aerosils, Glass Phys. Chem., 1999, vol. 25, no. 3, pp. 274–280.

    CAS  Google Scholar 

  22. Bortkevich, A.V., Dymshits, O.S., Zhilin, A.A., Polushkin, A.Yu., Tsenter, M.Ya., and Shashkin, A.V., Study of phase transformations in titanium-containing magnesium-aluminum silicate glasses and glass-ceramics for diffuse reflectors, J. Opt. Technol., 2002, vol. 69, no. 8, pp. 588–594.

    Article  CAS  Google Scholar 

  23. Patzig, C., Dittmer, M., Gawronski, A., Höche, T., and Russel, C., Crystallization of ZrO2-nucleated MgO/Al2O3/SiO2 glasses—A TEM study, CrystEngComm, 2014, vol. 16, pp. 6578–6587.

    Article  CAS  Google Scholar 

  24. Seidel, S., Patzig, C., Wisniewskii, W., Gawronski, A., Hu, Y., Höche, T., and Rüssel, C., Characterizing the residual glass in a MgO/Al2O3/SiO2/ZrO2/Y2O3 glass-ceramic, Sci. Rep., 2016, vol. 6, p. 34965.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Saratovskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saratovskii, A.S., Evstropiev, S.K., Dukel’skii, K.V. et al. Sol-Gel Synthesis of MgO–Al2O3–ZrO2–SiO2 Coatings on Quartz Ceramics. Glass Phys Chem 48, 669–672 (2022). https://doi.org/10.1134/S1087659622600831

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659622600831

Keywords:

Navigation