Skip to main content
Log in

Infrared Spectroscopy of Composite Materials Based on High-Silica Porous Glasses Activated by Bismuth and Yttrium Ions

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Composite materials (CMs) based on matrices of high-silica nanoporous glasses (NPGs) activated by bismuth and yttrium ions are synthesized. The CMs are studied by IR spectroscopy (1000–400 cm–1), depending on the Bi/Y nitrate ratio in the solution (1 : 1 and 10 : 1) and the heat treatment temperature of the CMs (from 470 to 870°C). The method of IR spectroscopy in composites identifies vibrations characteristic of the cubic modification Y2O3 and for the monoclinic modification of bismuth oxide (α–Bi2O3); for vibrations of Bi–O and Bi–O–Bi bonds, as well as Bi3+ cations in [BiO6] and/or [Bio3] structural units; and for vibrations of Bi–O–Si bonds, and for Y–O–Y and Y–O bonds. It is established that an increase in the yttrium content in CMs heat-treated at 470 and 870°C, (all other things being equal) leads to the appearance of additional absorption bands at 564, 556, 432, and 424 cm–1, which may be related to the formation of the cubic phase Y2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Liu, X., Staubitz, A., and Gesing, T.M., Thermochromic behavior of yttrium-substituted bismuth oxides, ACS Appl. Mater. Interfaces, 2019, vol. 11, pp. 33147–33156.

    Article  CAS  Google Scholar 

  2. Mizoguchi, H., Kawazoe, H., Hosono, H., and Fujitsu, S., Charge transfer band observed in bismuth mixed-valence oxides, Bil–xYxO1.5+δ (x = 0.3), Solid State Commun., 1997, vol. 104, pp. 705–708.

    Article  CAS  Google Scholar 

  3. Šulcová, P. and Trojan, M., Thermal analysis of the (Bi2O3)1–x(Y2O3)x pigments, J. Therm. Anal. Calorim., 2008, vol. 91, pp. 151–154.

    Article  Google Scholar 

  4. Watanabe, A., Phase equilibrium in the system Bi2O3-Y2O3: No possibility of δ-Bi2O3 stabilization, Solid State Ionics, 1996, vols. 86–88, pp. 1427–1430.

    Article  Google Scholar 

  5. Wang, S.L., Hu, Z.B., Gao, F., Wang, C.P., and Liu, X.J., Thermodynamic assessments of the Bi–Tb and Bi–Y systems, J. Phase Equilib. Diffus., 2011, vol. 32, pp. 441–446.

    Article  CAS  Google Scholar 

  6. Zhen, Q., Kale, G.M., Shi, G., Li, R., He, W., and Liu, J., Processing of dense nanocrystalline Bi2O3-Y2O3 solid electrolyte, Solid State Ionics, 2005, vol. 176, pp. 2727–2733.

    Article  CAS  Google Scholar 

  7. Girsova, M.A., Golovina, G.F., Anfimova, I.N., Kurilenko, L.N., and Antropova, T.A., Glass Phys. Chem., 2022, vol. 48, no. 5, pp. 384–393.

  8. Antropova, T., Girsova, M., Anfimova, I., Drozdova, I., Polyakova, I., and Vedishcheva, N., Structure and spectral properties of the photochromic quartz-like glasses activated by silver halides, J. Non-Cryst. Solids, 2014, vol. 401, pp. 139–141.

    Article  CAS  Google Scholar 

  9. Antropova, T.V., Girsova, M.A., Anfimova, I.N., Golovina, G.F., Kurilenko, L.N., and Firstov, S.V., Method of luminescent bismuth-containing quartzlike material producing based on high-silica porous glass, RF Patent 2605711, Byull. Izobret., 2016, no. 36.

  10. Reddy, D.V.K., Taherunnisa, Sk., Prasanna, A.L., Rao, T.S., Veeraiah, N., and Reddy, M.R., Enhancement of the red emission of Eu3+ by Bi3+ sensitizers in yttrium alumino bismuth borosilicate glasses, J. Mol. Struct., 2019, vol. 1176, pp. 133–148.

    Article  Google Scholar 

  11. Husung, R.D. and Doremus, R.H., The infrared transmission spectra of four silicate glasses before and after exposure to water, J. Mater. Res., 1990, vol. 5, pp. 2209–2217.

    Article  CAS  Google Scholar 

  12. Haritha, A.H. and Rao, R.R., Sol-gel synthesis and phase evolution studies of yttrium silicates, Ceram. Int., 2019, vol. 45, pp. 24957–24964.

    Article  CAS  Google Scholar 

  13. Hammad, A.H., Abdelghany, A.M., and ElBatal, H.A., Thermal, structural, and morphological investigations of modified bismuth silicate glass-ceramics, Silicon, 2017, vol. 9, pp. 239–248.

    Article  CAS  Google Scholar 

  14. Kundu, R.S., Dult, M., Punia, R., Parmar, R., and Kishore, N., Titanium induced structural modifications in bismuth silicate glasses, J. Mol. Struct., 2014, vol. 1063, pp. 77–82.

    Article  CAS  Google Scholar 

  15. Romo, F.C., Murillo, A.G., Torres, D.L., Castro, N.C., Romero, V.H., de la Rosa, E., Febles, V.G., and Hernández, M.G., Structural and luminescence characterization of silica coated Y2O3:Eu3+ nanopowders, Opt. Mater., 2010, vol. 32, pp. 1471–1479.

    Article  Google Scholar 

  16. Cacaina, D., Ylanen, H., Simon, S., and Hupa, M., The behaviour of selected yttrium containing bioactive glass microspheres in simulated body environments, J. Mater. Sci.: Mater. Med., 2008, vol. 19, pp. 1225–1233.

    CAS  Google Scholar 

  17. Ardelean, I. and Cora, S., FT-IR, Raman and UV-VIS spectroscopic studies of copper doped 3Bi2O3·B2O3 glass matix, J. Mater. Sci.: Mater. Electron., 2008, vol. 19, pp. 584–588.

    CAS  Google Scholar 

  18. Singh, L., Thakur, V., Punia, R., Kundu, R.S., and Singh, A., Structural and optical properties of barium titanate modified bismuth borate glasses, Solid State Sci., 2014, vol. 37, pp. 64–71.

    Article  CAS  Google Scholar 

  19. Fuss, T., Moguš-Milanković, A., Ray, C.S., Lesher, C.E., Youngman, R., and Day, D.E., Ex situ XRD, TEM, IR, Raman and NMR spectroscopy of crystallization of lithium disilicate glass at high pressure, J. Non-Cryst. Solids, 2006, vol. 352, pp. 4101–4111.

    Article  CAS  Google Scholar 

  20. Dimitrov, V., Dimitriev, Y., and Montenero, A., IR spectra and structure of V2O5–GeO2–Bi2O3 glasses, J. Non-Cryst. Solids, 1994, vol. 180, pp. 51–57.

    Article  CAS  Google Scholar 

  21. Shanmugapriya, T., and Balavijayalakshmi, J., Role of graphene oxide/yttrium oxide nanocomposites as a cathode material for natural dye-sensitized solar cell applications, Asia-Pac. J. Chem. Eng., 2021, vol. 16, e2598. https://doi.org/10.1002/apj.2598

    Article  CAS  Google Scholar 

  22. Muresan, L.E., Cadis, A.I., Perhaita, I., and Indrea, E., Morpho-structural and luminescence investigations on yttrium silicate based phosphors prepared with different precipitating agents, Centr. Eur. J. Chem., 2014, vol. 12, pp. 1023–1031.

    CAS  Google Scholar 

  23. Hajizadeh-Oghaz, M., Razavi, R.S., Barekat, M., Naderi, M., Malekzadeh, S., and Rezazadeh, M., Synthesis and characterization of Y2O3 nanoparticles by sol-gel process for transparent ceramics applications, J. Sol-Gel Sci. Technol., 2016, vol. 78, pp. 682–691.

    Article  CAS  Google Scholar 

  24. Tanner, P.A. and Sun, R.W.Y., Use of preformed sols in the synthesis of luminescent lanthanide ion-doped yttria, J. Mater. Sci., 2001, vol. 36, pp. 2253–2255.

    Article  CAS  Google Scholar 

  25. McDevitt, N.T. and Baun, W.L., Infrared absorption study of metal oxides in the low frequency region (700–240 cm–1), Spectrochim. Acta, Part A, 1964, vol. 20, pp. 799–808.

    Article  CAS  Google Scholar 

  26. Ardelean, I. and Rusu, D., Structural investigations of some B2O3 based glasses, J. Optoelectron. Adv. Mater., 2008, vol. 10, pp. 66–73.

    CAS  Google Scholar 

  27. Rejisha, S.R., Anjana, P.S., and Gopakumar, N., Effect of cerium(IV) oxide on the optical and dielectric properties of strontium bismuth borate glasses, J. Mater. Sci.: Mater. Electron., 2016, vol. 27, pp. 5475–5482.

    CAS  Google Scholar 

  28. Eniu, D. and Simon, S., Structural properties of melt versus sol-gel derived yttrium aluminosilicate systems, Ceram. Int., 2018, vol. 44, pp. 9581–9584.

    Article  CAS  Google Scholar 

  29. Ardelean, I., Cora, S., and Rusu, D., EPR and FT-IR spectroscopic studies of Bi2O3–B2O3–CuO glasses, Phys. B (Amsterdam, Neth.), 2008, vol. 403, pp. 3682–3685.

    Google Scholar 

  30. Teja, P.M.V., Babu, A.R., Rao, P.S., Vijay, R., and Rao, D.K., Structural changes in the ZnF2–Bi2O3–GeO2 glass system doped with Fe2O3 by spectroscopic and dielectric investigations, J. Phys. Chem. Solids, 2013, vol. 74, pp. 963–970.

    Article  Google Scholar 

Download references

Funding

This work was supported by the RF Ministry of Science and Higher Education as part of the state assignment of the the Institute of Silicate Chemistry, Russian Academy of Sciences (state registration no. AAAA-A19-119022290087-1 and no. 1021050501068-5-1.4.3 (project FFEM-2022-0004)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Girsova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girsova, M.A., Golovina, G.F. & Kurilenko, L.N. Infrared Spectroscopy of Composite Materials Based on High-Silica Porous Glasses Activated by Bismuth and Yttrium Ions. Glass Phys Chem 48, 588–593 (2022). https://doi.org/10.1134/S1087659622600430

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659622600430

Keywords:

Navigation