Skip to main content
Log in

Electronic Structure of Titanium Dioxide Doped with Nickel and Chromium Atoms

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Changes in the band gap and density of electronic states of titanium dioxide upon doping with transition metals Ni and Cr, as well as codoping with Ni/Cr–TiO2, are studied by the density functional method in the LDA + U approximation. It is shown that, upon doping with TiO2 in the band gap, local levels of impurity states of chromium and nickel arise. Taking into account the parameters of the Coulomb and exchange interactions allow us to obtain the band gap values of 3.14 eV for anatase, 2.93 eV for the TiO2 structure doped with nickel atoms, 2.96 eV for the TiO2 structure doped with chromium atoms, and 2.88 eV for the TiO2 structure codoped with nickel and chromium atoms, which are in good agreement with the experimental values of 3.20, 2.86, 2.98, and 2.45 eV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Park, M.C., Yoon, W.H., Lee, D.H., Myoung, J.M., Bae, S.H., Lee, S.Y., and Yun, I., Effect of misfit strain on properties of TiO2 films grown by pulsed laser deposition, Mater. Res. Soc. Symp. Proc., 2002, vol. 696, no. 3, p. 25.

    Google Scholar 

  2. Khezerlou, A., Alizadeh-Sani, M., Azizi-Lalabadi, M., and Ehsani, A., Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses, Microb. Pathog., 2018, vol. 123, pp. 505–526.

    Article  CAS  Google Scholar 

  3. Asahi, R., Taga, Y., Mannstadt, W., and Freeman, A.J., Electronic and optical properties of anatase TiO2, Phys. Rev. B, 2000, vol. 61, no. 11, pp. 7459–7465.

    Article  CAS  Google Scholar 

  4. Amtout, A. and Leonelli, R., Optical properties of rutile near its fundamental band gap, Phys. Rev. B, 1995, vol. 51, no. 11, pp. 6842–6851.

    Article  CAS  Google Scholar 

  5. Koelsch, M., Cassaignon, S., Minh, C.T.T., Guillemoles, J.F., and Jolivet, J.P., Electrochemical comparative study of titania (anatase, brookite and rutile) nanoparticles synthesized in aqueous medium, Thin Solid Films, 2004, vol. 451, pp. 86–92.

    Article  Google Scholar 

  6. Daskalaki, V.M., Antoniadou, M., Puma, G.L., Kondarides, D.I., and Lianos, P., Solar light-responsive Pt/CdS/TiO2 photocatalysts for hydrogen production and simultaneous degradation of inorganic or organic sacrificial agents in wastewater, Environ. Sci. Technol., 2010, vol. 44, pp. 7200–7205.

    Article  CAS  Google Scholar 

  7. Grätzel, M., Photoelectrochemical cells, Nature (London, U.K.), 2001, vol. 414, pp. 338–344.

    Article  Google Scholar 

  8. Hernández-Alonso, M.D., Fresno, F., Suáreza, S., and Coronado, J.M., Development of alternative photocatalysts to TiO2: Challenges and opportunities, Energy Environ. Sci., 2009, vol. 2, pp. 1231–1257.

    Article  Google Scholar 

  9. Umebayashi, T., Yamaki, T., Itoh, H., and Asai, K., Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations, J. Phys. Chem. Solids, 2002, vol. 63, pp. 1909–1920.

    Article  CAS  Google Scholar 

  10. Yu, J., Xiang, Q., and Zhou, M., Preparation, characterization and visible-light driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures, Appl. Catal., 2009, vol. 90, pp. 595–602.

    Article  CAS  Google Scholar 

  11. Hou, X.G., Liu, A.D., Huang, M.D., Liao, B., and Wu, X.L., First-principles band calculations on electronic structures of Ag-doped rutile and anatase TiO2, Chin. Phys. Lett., 2009, vol. 26, no. 7, 077106.

    Article  Google Scholar 

  12. Himmetoglu, B., Floris, A., de Gironcoli, S., and Cococcioni, M., Hubbard-corrected DFT energy functionals: The LDA+U description of correlated systems, Int. J. Quantum Chem., 2014, vol. 114, pp. 14–49.

    Article  CAS  Google Scholar 

  13. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., et al., Quantum ESPRESSO: A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter, 2009, vol. 21, no. 39, 395502.

    Google Scholar 

  14. Giannozzi, P., Andreussi, O., Brumme, T., Bunau, O., Buongiorno Nardelli, M., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Cococcioni, M., Colonna, N., Carnimeo, I., dal Corso, A., de Gironcoli, S., Delugas, P., et al., Advanced capabilities for materials modelling with quantum ESPRESSO, J. Phys.: Condens. Matter, 2017, vol. 29, 465901.

    CAS  Google Scholar 

  15. Nguyen, T.T., Nam, T.V., and Bach, T.C., Influences of metallic doping on anatase crystalline titanium dioxide: From electronic structure aspects to efficiency of TiO2-based dye sensitized solar cell (DSSC), Mater. Chem. Phys., 2014, vol. 144, pp. 114–121.

    Article  CAS  Google Scholar 

  16. Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J., and Sutton, A.P., Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study, Phys. Rev. B, 1998, vol. 57, no. 3, pp. 1505–1509.

    Article  CAS  Google Scholar 

  17. Zhu, T. and Gao, S.P., The stability, electronic structure, and optical property of TiO2 polymorphs, J. Phys. Chem. C, 2014, vol. 118, p. 11385–11396.

    Article  CAS  Google Scholar 

  18. Duzhko, V., Timoshenko, V.Y., Koch, F., and Dittrich, T., Photovoltage in nanocrystalline porous TiO2, Phys. Rev. B, 2001, vol. 64, 075204.

    Article  Google Scholar 

  19. Tang, H., Lévy, F., Berger, H., and Schmid, P.E., Urbach tail of anatase TiO2, Phys. Rev. B, 1995, vol. 52, no. 11, pp. 7771–7774.

    Article  CAS  Google Scholar 

  20. Howard, C.J., Sabina, T.M., and Dickson, F., Structural and thermal parameters for rutile and anatase, Acta Crystallogr., Sect. B, 1991, vol. 47, pp. 462–468.

    Article  Google Scholar 

  21. Burdett, J.K., Hughbanks, T., Miller, G.J., Richardson, J.W., Smith, Jr., and Smith, J.V., Structural-electronic relationships in inorganic solids: Powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K, J. Am. Chem. Soc., 1987, vol. 109, pp. 3639–3646.

    Article  CAS  Google Scholar 

  22. Karthik, K., Kesava Pandian, S., and Victor Jaya, N., Effect of nickel doping on structural, optical and electrical properties of TiO2 nanoparticles by sol-gel method, Appl. Surf. Sci., 2010, vol. 256, pp. 6829–6833.

    Article  CAS  Google Scholar 

  23. Ramezani, M., Aghabozorg, H.R., and Sakhaie, F., Preparation and characterization of chromium doped titania hollow nano-spheres, J. Sci. (Islamic Azad Univ.), 2009, vol. 19, no. 72, pp. 77–84.

    Google Scholar 

  24. Soni, P., Murty, V.V.S., and Kushwaha, K.K., The effect of Ni2+ ions on energy band gap of TiO2 nanoparticles for solar cell applications, J. Nanosci. Nanoeng. Appl., 2018, vol. 8, no. 2, pp. 69–74.

    Google Scholar 

  25. Hasan, A.H. and Hasan, F.A., Synthesis of Cr doped TiO2 using sol-gel technique and calculation of its photocatalytic activity, Indian J. Nat. Sci., 2018, vol. 9, no. 51, pp. 15242–15249.

    Google Scholar 

  26. Shaban, M., Ahmed, A.M., Shehata, N., Betiha, M.A., and Rabie, A.M., Ni-doped and Ni/Cr co-doped TiO2 nanotubes for enhancement of photocatalytic degradation of methylene blue, J. Colloid Interface Sci., 2019, vol. 555, pp. 31–41.

    Article  CAS  Google Scholar 

  27. Griffith, J.S. and Orgel, L.E., Ligand field theory, Q. Rev. Chem. Soc., 1957, vol. 11, pp. 381–383.

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by grants from the Ministry of Innovative Development of the Republic of Uzbekistan, nos. FZ-201906066 and FZ-2020092325.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Pecherskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pecherskaya, M.D., Butanov, K.T., Ruzimuradov, O.N. et al. Electronic Structure of Titanium Dioxide Doped with Nickel and Chromium Atoms. Glass Phys Chem 48, 327–332 (2022). https://doi.org/10.1134/S1087659622040101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659622040101

Keywords:

Navigation