Skip to main content
Log in

Ceramic Composites Based on Lanthanum Orthophosphate and Alumina: Preparation and Properties

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

An original approach to synthesis of nanosized (1 – x)LaPO4·nH2O–xAl(OH)3 precursor powders for (1 – x)LaPO4xAl2O3 ceramic composites preparation was considered. Sol-gel synthesis was carried out separately using reverse flocculation of components. Thermal behavior of precursor powders was studied by DSC/TG. Ceramic composites with microhardness up to 30‒40 GPa were obtained by pre-heat treatment of powders and subsequent step wise sintering in the 1000–1600°C temperature range. The fracture surface of ceramic samples at different sintering temperatures was examined using electron microscopy. Ceramic samples exhibited low thermal conductivity at various temperatures and open porosity 3‒5%. Chemical stability of 0.8LaPO4–0.2Al2O3 sample was studied by leaching experiment in a solution of a mixture of NaCl and Na2SO4 salts. The resulting set of properties of (1 – x)LaPO4xAl2O3 ceramic composites made it possible to offer these materials as heat barriers for rotors in high-speed micro gas turbines, and as ceramic matrices for immobilization of nuclear waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Wang, Y., Liu, H.-T., Cheng, H.-F., and Wang, J., Research progress on oxide/oxide ceramic matrix composites, Inorg. Chem., 2014, vol. 29, no. 7, pp. 673–680.

    Google Scholar 

  2. Levi, C.G., Emerging materials and processes for thermal barrier systems, Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, no. 1, pp. 77–91.

    Article  CAS  Google Scholar 

  3. Ren, X., Zhao, M., and Pan, W., Thermal conductivity and mechanical properties of YSZ/LaPO4 composites, J. Mater. Sci., 2014, vol. 49, no. 5, pp. 2243–2251.

    Article  CAS  Google Scholar 

  4. Yang, J., Wan, C., Zhao, M., Shahid, M., and Pan, W., Effective blocking of radiative thermal conductivity in La2Zr2O7/LaPO4 composites for high temperature thermal insulation applications, J. Eur. Ceram. Soc., 2016, vol. 36, no. 15, pp. 3809–3814.

    Article  CAS  Google Scholar 

  5. Sujith, S.S., Arun Kumar, S.L., Mahesh, K.V., Mohamed, A.P., and Ananthakumar, S., Sintering and thermal shock resistance properties of LaPO4 based composite refractories, Trans. Indian Ceram. Soc., 2014, vol. 73, no. 2, pp. 161–164.

    Article  CAS  Google Scholar 

  6. Min, W., Miyahara, D., Yokoi, K., Yamaguchi, T., Daimon, K., Hikichi, Y., Matsubara, T., and Ota, T., Thermal and mechanical properties of sintered LaPO4-Al2O3 composites, Mater. Res. Bull., 2001, vol. 36, nos. 5–6, pp. 939–945.

    Article  CAS  Google Scholar 

  7. Wang, R., Pan, W., Chen, J., Fang, M., Jiang, M., and Cao, Z., Microstructure and mechanical properties of machinable Al2O3/LaPO4 composites by hot pressing, Ceram. Int., 2003, vol. 29, no. 1, pp. 83–89.

    Article  Google Scholar 

  8. Men, D., Patel, M.K., Usov, I.O., Toiammou, M., Monnet, I., Pivin, J.C., Porter, J.R., and Mecartney, M.L., Radiation damage in multiphase ceramics, J. Nucl. Mater., 2013, vol. 443, pp. 120–127.

    Article  CAS  Google Scholar 

  9. Mezentseva, L.P., Osipov, A.V., Akatov, A.A., Doil’nitsyn, V.A., Pugachev, K.E., and Koptelova, L.A., Ceramic matrix composites based on lanthanum orthophosphate for disposal of high-level radioactive waste, Glass Phys. Chem., 2019, vol. 45, no. 6, pp. 565–572.

  10. Badolia, A., Sarkar, R., and Pal, S.K., Reactive alumina-LaPO4 composite as machinable bioceramics, Bull. Mater. Sci., 2015, vol. 38, no. 4, pp. 975–983.

    Article  CAS  Google Scholar 

  11. Badolia, A., Sarkar, R., and Pal, S.K., Lanthanum phosphate containing machinable alumina ceramics for bio-medical applications, Trans. Indian Ceram. Soc., 2014, vol. 73, no. 2, pp. 115–120.

    Article  CAS  Google Scholar 

  12. Mezentseva, L., Osipov, A., Ugolkov, V., Akatov, A., Doil’nitsyn, V., Maslennikova, T., and Yakovlev, A., Synthesis and thermal behavior of nanopowders in LaPO4–YPO4(–H2O), LaPO4–LuPO4(–H2O) and YPO4–ScPO4(–H2O) systems for ceramic matrices, J. Nanomed. Res., 2017, vol. 6, no. 1.

  13. Ugolkov, V.L., Mezentseva, L.P., Osipov, A.V., Popova, V.F., Maslennikova, T.P., Akatov, A.A., and Doil’nitsyn, V.A., Synthesis of nanopowders and physicochemical properties of ceramic matrices of the LaPO4–YPO4–(H2O) and LaPO4–HoPO4–(H2O) systems, Russ. J. Appl. Chem., 2017, vol. 90, no. 1, pp. 28–33.

    Article  CAS  Google Scholar 

  14. Mezentseva, L., Osipov, A., Ugolkov, V., Kruchinina, I., Maslennikova, T., and Koptelova, L., Sol-gel synthesis of precursors and preparation of ceramic composites based on LaPO4 with Y2O3 and ZrO2 additions, J. Sol-Gel Sci. Technol., 2019, vol. 92, no. 2, pp. 427–441.

    Article  CAS  Google Scholar 

  15. Monin, A.V., Zemtsova, E.G, Shveikina, N.B., and Smirnov, V.M., Synthesis of micro- and nanoparticles of aluminium oxide by sol-gel method, Vestn. SPbGU, Ser. 4, 2010, no. 4, pp. 154–157.

  16. Diaz-Guillén, J.A., Fuentes, A.F., Gallini, S., and Colomer, M.T., A rapid method to obtain nanometric particles of rhabdophane LaPO4·nH2O by mechanical milling, J. Alloys Compd., 2007, vol. 427, nos. 1–2, pp. 87–93.

    Article  Google Scholar 

  17. Bregiroux, D., Lucas, S., Champion, E., Audubert, F., and Bernache-Assollant, D., Sintering and microstructure of rare earth phosphate ceramics RePO4 with Re = La, Ce or Y, J. Eur. Ceram. Soc., 2006, vol. 26, no. 3, pp. 279–287.

    Article  CAS  Google Scholar 

  18. Lucas, S., Champion, E., Bregiroux, D., Bernache-Assollant, D., and Audubert, F., Rare earth phosphate powders RePO4·nH2O (Re=La, Ce or Y). Part I. Synthesis and characterization, J. Solid State Chem., 2004, vol. 177, nos. 4–5, pp. 1302–1311.

    Article  CAS  Google Scholar 

  19. Anfimova, T., Li, Q., Jensen, J.O., and Bjerrum, N.J., Thermal stability and proton conductivity of rare earth orthophosphate hydrates, Int. J. Electrochem. Sci., 2014, vol. 9, no. 5, pp. 2285–2300.

    Google Scholar 

  20. Kas’yanova, L.Z., Karimov, O.Kh., and Karimov, E.Kh., Regulation of the physicochemical properties of thermally activated aluminum trihydrate, Bashkir. Khim. Zh., 2014, vol. 21, no. 3, pp. 90–94.

    Google Scholar 

  21. Kosenko, N.F., Aluminum oxide polymorphism, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2011, vol. 54, no. 5, pp. 3–16.

    Google Scholar 

  22. Majeed, M.A., Vijayaraghavan, L., Malhotra, S.K., and Krishnamoorthy, R., Characterization and machining of alumina ceramic reinforced with lanthanum phosphate, J. Mater. Process. Technol., 2009, vol. 209, no. 5, pp. 2499–2507.

    Article  Google Scholar 

  23. Babelot, C., Bukaemskiy, A., Neumeier, S., Modolo, G., and Bosbach, D., Crystallization processes, compressibility, sinterability and mechanical properties of La-monazite-type ceramics, J. Eur. Ceram. Soc., 2017, vol. 37, no. 4, pp. 1681–1688.

    Article  CAS  Google Scholar 

  24. Wang, R., Pan, W., Chen, J., Fang, M., Cao, Z., and Luo, Y., Synthesis and sintering of LaPO4 powder and its application, Mater. Chem. Phys., 2003, vol. 79, no. 1, pp. 30–36.

    Article  CAS  Google Scholar 

  25. Du, A., Pan, W., Ahmad, K., Shi, S., Qu, Z., and Wan, C., Enhanced mechanical properties of machinable LaPO4/Al2O3 composites by spark plasma sintering, Int. J. Appl. Ceram. Technol., 2009, vol. 6, no. 2, pp. 236–242.

    Article  CAS  Google Scholar 

  26. Wang, R., Pan, W., Chen, J., Fang, M., and Meng, J., Effect of LaPO4 content on the microstructure and machinability of Al2O3/LaPO4 composites, Mater. Lett., 2002, vol. 57, no. 4, pp. 822–827.

    Article  CAS  Google Scholar 

  27. Mezentseva, L.P., Osipov, A.V., Ugolkov, V.L., Akatov, A.A., and Doil’nitsyn, V.A., Physicochemical properties of ceramics based on a LaPO4–DyPO4 system, Glass Phys. Chem., 2019, vol. 45, no. 4, pp. 268–271.

Download references

ACKNOWLEDGMENTS

The authors thank the Senior Lecturer of the St. Petersburg State Institute of Technology (SPSIT) Andrey Akatov for his assistance in conducting experiments partially performed at the Department of Engineering Radioecology and Radiochemical Technology.

The authors wish also thank Irina Protasova and Maxim Kovalev for some research with the use of the equipment belonging to LLC “MELYTEC”, Russia, the largest dealer of research equipment and services.

Funding

The work was performed with the financial support of the Russian Foundation for Basic Research (Project no. 18-03-00488-a) and under the budget program of the Institute of Silicate Chemistry of RAS with the support of the Ministry of Education and Science of the Russian Federation (no. 0081-2022-0008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Mezentseva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezentseva, L.P., Osipov, A.V., Ugolkov, V.L. et al. Ceramic Composites Based on Lanthanum Orthophosphate and Alumina: Preparation and Properties. Glass Phys Chem 48, 219–231 (2022). https://doi.org/10.1134/S1087659622030075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659622030075

Keywords:

Navigation