Skip to main content
Log in

Thermal conductivity and mechanical properties of YSZ/LaPO4 composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High temperature gas turbine sealing is an important issue for increasing the thermal efficiency of gas turbine. In this purpose, layered structured LaPO4 has been selected as the soft phase to add into the commercialized thermal barrier coating material 7 wt% yttria stabilized zirconia (7YSZ). The consequent thermal conductivities and mechanical properties versus the content of LaPO4 have been researched systemically in this paper. Phase composition and microstructure of the high-temperature sintered LaPO4/7YSZ composites were characterized. The thermal conductivity decreases significantly due to the second phase effects and the interface thermal resistance was also strongly involved according to the composite model. The hardness decreased by composed LaPO4 phase so that to reduce attrition of the vanes at high temperature. The slight increase of fracture toughness and bending strength in the results were also favored in operation. The experimental results demonstrate that the LaPO4/7YSZ composite will be an excellent candidate abradable sealing material for high temperature gas turbine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Saini A, Pollock T (2012) High-temperature materials increase efficiency of gas power plants. MRS Bull 37:550–551

    Article  Google Scholar 

  2. Borel MO, Nicoll AR, Schlapfer HW, Schmid RK (1989) The wear mechanisms occurring in abradable seals of gas-turbines. Surf Coat Technol 39:117–126

    Article  Google Scholar 

  3. DeMasi-Marcin JT, Gupta DK (1994) Protective coatings in the gas turbine engine. Surf Coat Technol 68–69:1–9

    Article  Google Scholar 

  4. Hardwicke CU, Lau YC (2013) Advances in thermal spray coatings for gas turbines and energy generation: a review. J Therm Spray Technol 22:564–576

    Article  Google Scholar 

  5. Donald IW, Mallinson PM, Metcalfe BL, Gerrard LA, Fernie JA (2011) Recent developments in the preparation, characterization and applications of glass-and glass–ceramic-to-metal seals and coatings. J Mater Sci 46:1975–2000. doi:10.1007/s10853-010-5095-y

    Article  Google Scholar 

  6. Bardi U, Giolli C, Scrivani A, Rizzi G, Borgioli F, Fossati A, Partes K, Seefeld T, Sporer D, Refke A (2008) Development and investigation on new composite and ceramic coatings as possible abradable seals. J Therm Spray Technol 17:805–811

    Article  Google Scholar 

  7. Wang HG (1996) Criteria for analysis of abradable coatings. Surf Coat Technol 79:71–75

    Article  Google Scholar 

  8. Ma X, Matthews A (2009) Evaluation of abradable seal coating mechanical properties. Wear 267:1501–1510

    Article  Google Scholar 

  9. Faraoun HI, Grosdidier T, Seichepine JL, Goran D, Aourag H, Coddet C, Zwick J, Hopkins N (2006) Improvement of thermally sprayed abradable coating by microstructure control. Surf Coat Technol 201:2303–2312

    Article  Google Scholar 

  10. Johnston RE (2011) Mechanical characterisation of AlSi–hBN, NiCrAl–Bentonite, and NiCrAl–Bentonite–hBN freestanding abradable coatings. Surf Coat Technol 205:3268–3273

    Article  Google Scholar 

  11. Richardt K, Bobzin K, Sporer D, Schlafer T, Fiala P (2008) Tailor-made coatings for turbine applications using the Triplex Pro 200. J Therm Spray Technol 17:612–616

    Article  Google Scholar 

  12. Novinski E, Harrington J, Klein J (1982) Modified zirconia abradable seal coating for high temperature gas turbine applications. Thin Solid Films 95:255–263

    Article  Google Scholar 

  13. Bounazef M, Guessasma S, Saadi BA (2004) The wear, deterioration and transformation phenomena of abradable coating BN–SiAl-bounding organic element, caused by the friction between the blades and the turbine casing. Mater Lett 58:3375–3380

    Article  Google Scholar 

  14. Matějíček J, Kolman B, Dubský J, Neufuss K, Hopkins N, Zwick J (2006) Alternative methods for determination of composition and porosity in abradable materials. Mater Charact 57:17–29

    Article  Google Scholar 

  15. Cao XQ, Vassen R, Stoever D (2004) Ceramic materials for thermal barrier coatings. J Eur Ceram Soc 24:1–10

    Article  Google Scholar 

  16. Zhao M, Zhang LX, Pan W (2012) Properties of yttria-stabilized-zirconia based ceramic composite abradable coatings. Key Eng Mater 512-515:1551–1554 (High-Performance Ceramics VII, Pts 1 and 2)

    Article  Google Scholar 

  17. Luo YM, Pan W, Li SQ, Wang RG, Li JQ (2003) Fabrication of Al2O3–Ti3SiC2 composites and mechanical properties evaluation. Mater Lett 57:2509–2514

    Article  Google Scholar 

  18. Yi MZ, He JW, Huang BY, Zhou HJ (1999) Friction and wear behavior and abradability of abradable seal coating. Wear 231:47–53

    Article  Google Scholar 

  19. Ma X, Matthews A (2007) Investigation of abradable seal coating performance using scratch testing. Surf Coat Technol 202:1214–1220

    Article  Google Scholar 

  20. Kawakame M, Bressan JD (2006) Study of wear in self-lubricating composites for application in seals of electric motors. J Mater Process Technol 179:74–80

    Article  Google Scholar 

  21. Clegg MA, Mehta MH (1988) NiCrAl/Bentonite thermal spray powder for high-temperature abradable seals. Surf Coat Technol 34:69–77

    Article  Google Scholar 

  22. Du AB, Wan CL, Qu ZX, Pan W (2009) Thermal conductivity of monazite-type REPO4 (RE = La, Ce, Nd, Sm, Eu, Gd). J Am Ceram Soc 92:2687–2692

    Article  Google Scholar 

  23. Hikichi Y, Nomura T (1987) Melting temperatures of monazite and xenotime. J Am Ceram Soc 70:C252–C253

    Google Scholar 

  24. Morgan P, Marshall DB (1995) Ceramic composites of monazite and alumina. J Am Ceram Soc 78:1553–1563

    Article  Google Scholar 

  25. Padture NP, Gell M, Jordan EH (2002) Thermal barrier coatings for gas-turbine engine applications. Science 296:280–284

    Article  Google Scholar 

  26. Min W, Daimon K, Matsubara T, Hikichi Y (2002) Thermal and mechanical properties of sintered machinable LaPO4–ZrO2 composites. Mater Res Bull 37:1107–1115

    Article  Google Scholar 

  27. Davis JB, Marshall DB, Housley RM, Morgan P (1998) Machinable ceramics containing rare-earth phosphates. J Am Ceram Soc 81:2169–2175

    Article  Google Scholar 

  28. Kuo DH, Kriven WM (1998) Fracture of multilayer oxide composites. Mater Sci Eng A 241:241–250

    Article  Google Scholar 

  29. Liang YJ, Che YC, Liu XX, Li NJ (1993) Manual of practical inorganic matter thermodynamics. Northeastern University Press, Shenyang

    Google Scholar 

  30. Schlichting KW, Padture NP, Klemens PG (2001) Thermal conductivity of dense and porous yttria-stabilized zirconia. J Mater Sci 36:3003–3010. doi:10.1023/A:1017970924312

    Article  Google Scholar 

  31. Ma D, Zhang QC (1989) Acoustic measurement of elastic constant for ceramic materials. J Inorg Mater 4:362–367

    Google Scholar 

  32. Lankford J (1982) Indentation microfracture in the palmqvist crack regime—implications for fracture-toughness evaluation by the indentation method. J Mater Sci Lett 1:493–495

    Article  Google Scholar 

  33. Rice RW, Wu CC, Borchelt F (1994) Hardness-grain-size relations in ceramics. J Am Ceram Soc 77:2539–2553

    Article  Google Scholar 

  34. Maxwell-Garnett JC (1904) Colours in metal glasses and in metallic films. Phil Trans R Soc London A 203:385–420

    Article  Google Scholar 

  35. Benvensite Y (1987) Effective thermal conductivity of composites with a thermal contact resistance between the constituents: nondilute case. J Appl Phys 61:2840–2843

    Article  Google Scholar 

  36. Hasselman DPH, Johnson LF (1987) Effective thermal conductivity of composites with interfacial thermal barrier resistance. J Comput Mater 21:508–515

    Article  Google Scholar 

  37. Du AB, Pan W, Ahmad K, Shi SL, Qu ZX, Wan CL (2009) Enhanced mechanical properties of machinable LaPO4/Al2O3 composites by spark plasma sintering. Int J Appl Ceram Technol 6:236–242

    Article  Google Scholar 

  38. Callister WD Jr (1990) Materials science and engineering: an introduction, 2nd edn. Wiley, New York

    Google Scholar 

  39. Tomaszewski H, Węglarz H, Wajler A, Boniecki M, Kalinski D (2007) Multilayer ceramic composites with high failure resistance. J Eur Ceram Soc 27:1373–1377

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 51272120).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, X., Guo, S., Zhao, M. et al. Thermal conductivity and mechanical properties of YSZ/LaPO4 composites. J Mater Sci 49, 2243–2251 (2014). https://doi.org/10.1007/s10853-013-7919-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7919-z

Keywords

Navigation