Skip to main content
Log in

Spectral-Luminescent Properties of Nanocomposite Materials Based on Porous Silicate Glasses Doped by Silver and Copper Bromides

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

A series of nanocomposite materials (NCMs) doped by silver and copper bromides are synthesized based on high-silica porous glasses (PG matrices). The concentrations of silver and copper oxides in the synthesized samples are 0.32–1.06 wt % Ag2O and 0.005–0.025 wt % CuO, respectively. The samples are thermally treated in a wide temperature range of 120–750°C. It is found that samples of the 100Ag/10Cu series (120°C) exhibit blue–green (λlum = 424–560 nm), yellow–orange (λlum = 584–588 nm), and red (λlum = 658–732 nm) luminescence. A study is conducted using the method of near infrared spectroscopy in the frequency range 7500–4000 cm–1. It is found that the dehydroxylation of the NCM surface and an increase in the transmittance in the entire specified frequency range occur with an increase in the temperature. The NCM samples have absorption bands in the range of 4190–4171 cm–1, which are caused by the absorption of Cu2+ ions. Energy-dispersive X-ray spectroscopy shows that the porous structure of the PG matrix has an effect on the concentration distribution of elements over the thickness of the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Murashov, A.A., Sidorov, A.I., Stolyarchuk, M.V., and Boiko, M.E., Effect of X-ray irradiation and thermal treatment on luminescent properties of barium-phosphate glasses doped with silver and copper, J. Non-Cryst. Solids, 2017, vol. 477, pp. 1–6.

    Article  CAS  Google Scholar 

  2. Antropova, T.V., Girsova, M.A., Anfimova, I.N., and Drozdova, I.A., Spectral properties of the high-silica porous glasses doped by silver halides, J. Lumin., 2018, vol. 193, pp. 29–33.

    Article  CAS  Google Scholar 

  3. Jiménez, J.A., Carbon-driven synthesis of bi-plasmonic Ag-Cu nanocomposite phosphate glasses, Mater. Chem. Phys., 2018, vol. 205, pp. 518–521.

    Article  Google Scholar 

  4. Wei, T.H., Chen, C.W., Hwang, L.C., Tu, P.L., and Wen, T.C., Room temperature luminescence in CuI/AgI quantum dots, J. Lumin., 2008, vol. 128, no. 1, pp. 161–165.

    Article  CAS  Google Scholar 

  5. Inwati, G.K., Kumar, P., Roos, W.D., Swart, H.C., and Singh, M., Uv-irradiation effects on tuning LSPR of Cu/Ag nanoclusters in ion exchanged glass matrix and its thermodynamic behavior, J. Alloys Compd., 2020, vol. 823, p. 153820.

    Article  CAS  Google Scholar 

  6. Antropova, T.V., Inorganic functional glass-forming materials based on eliminating alkaline borosilicate systems, in IKhS RAN-80 let. Sovremennye problemy neorganicheskoi khimii (80 Years of ICS RAS, Modern Problems of Inorganic Chemistry), Shevchenko, V.Ya., Ed., St. Petersburg: Art-Ekspress, 2016.

  7. Girsova, M.A. and Golovina, G.F., Study of bismuth-containing composites based on thermally modified porous glass with low additions of P2O5 and fluorine ions by the near infrared spectroscopy method, Glass Phys. Chem., 2018, vol. 44, no. 6, pp. 569–574.

    Article  CAS  Google Scholar 

  8. Girsova, M.A., Anfimova, I.N., Kurilenko, L.N., and Dikaya, L.F., Influence of heat-treatment conditions on the optical properties of bismuth-containing composites based on high-silica porous glass, Glass Phys. Chem., 2019, vol. 45, no. 6, pp. 592–595.

    Article  CAS  Google Scholar 

  9. Girsova, M.A., Antropova, T.V., Golovina, G.F., Anfimova, I.N., Kurilenko, L.N., and Arsent’ev, M.Yu., Synthesis and spectral-optical properties of composite materials based on high-silica porous glasses doped with silver and erbium iodides, IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 704, p. 012004.

  10. Girsova, M.A., Golovina, G.F., Kurilenko, L.N., and Anfimova, I.N., Infrared spectroscopy of bismuth-containing composites based on porous high-silica glass, Glass Phys. Chem., 2020, vol. 46, pp. 138–145.

    Article  CAS  Google Scholar 

  11. Girsova, M.A., Firstov, S.V., and Antropova, T.V., The influence of the bismuth concentration and heat treatment on the properties of bismuth-containing high-silica glass II: Luminescence properties, Glass Phys. Chem., 2019, vol. 45, no. 2, pp. 98–103.

    Article  CAS  Google Scholar 

  12. Dai, Y., Hu, X., Wang, C., Chen, D., Jiang, X., Zhu, C., Yu, B., and Qiu, J., Fluorescent Ag nanoclusters in glass induced by an infrared femtosecond laser, Chem. Phys. Lett., 2007, vol. 439, nos. 1–3, pp. 81–84.

    Article  CAS  Google Scholar 

  13. Borsella, E., Gonella, F., Mazzoldi, P., Quaranta, A., Battaglin, G., and Polloni, R., Spectroscopic investigation of silver in soda-lime glass, Chem. Phys. Lett., 1998, vol. 284, nos. 5–6, pp. 429–434.

    Article  CAS  Google Scholar 

  14. Yasumori, A., Tada, F., Yanagida, S., and Kishi, T., Yellow photoluminescence properties of copper ion doped phase-separated glasses in alkali borosilicate system, J. Electrochem. Soc., 2012, vol. 159, no. 5, pp. J143–J147.

    Article  CAS  Google Scholar 

  15. Gaft, M., Reisfeld, R., Panczer, G., Boulon, G., Saraidarov, T., and Erlish, S., The luminescence of Bi, Ag and Cu in natural and synthetic barite BaSO4, Opt. Mater., 2001, vol. 16, nos. 1–2, pp. 279–290.

    Article  CAS  Google Scholar 

  16. Chen, D., Miyoshi, H., Akai, T., and Yazawa, T., Colorless transparent fluorescence material: Sintered porous glass containing rare-earth and transition-metal ions, Appl. Phys. Lett., 2005, vol. 86, no. 23, p. 231908-1–231908-3.

    Article  Google Scholar 

  17. Klyukin, D.A., Dubrovin, V.D., Pshenova, A.S., Putilin, S.E., Shakhverdov, T.A., Tsypkin, A.N., Nikonorov, N.V., and Sidorov, A.I., Formation of luminescent and nonluminescent silver nanoparticles in silicate glasses by near-infrared femtosecond laser pulses and subsequent thermal treatment: The role of halogenides, Opt. Eng., 2016, vol. 55, no. 6, p. 067101-1–067101-7.

    Article  Google Scholar 

  18. Borsella, E., Dal, VecchioA., Garcıa, M.A., Sada, C., Gonella, F., Polloni, R., Quaranta, A., and van Wilderen, L.J.G.W., Copper doping of silicate glasses by the ion-exchange technique: A photoluminescence spectroscopy study, J. Appl. Phys., 2002, vol. 91, no. 1, pp. 90–98.

    Article  CAS  Google Scholar 

  19. Oliver, A., Cheang-Wong, J.C., Roiz, J., Hernández, J.M., Rodríguez-Fernández, L., and Crespos, A., Optical absorption and emission studies of 2 MeV Cu-implanted silica glass, Nucl. Instrum. Methods Phys. Res., Sect. B, 2001, vols. 175–177, pp. 495–499.

    Google Scholar 

  20. El Hamzaoui, H., Ouerdane, Y., Bigot, L., Bouwmans, G., Capoen, B., Boukenter, A., Girard, S., and Bouazaoui, M., Sol-gel derived ionic copper-doped microstructured optical fiber: A potential selective ultraviolet radiation dosimeter, Opt. Express, 2012, vol. 20, no. 28, pp. 29751–29760.

    Article  CAS  Google Scholar 

  21. Girsova, M.A., Golovina, G.F., Kurilenko, L.N., and Antropova, T.V., Spectral and luminescent properties of nanocomposite materials based on porous silicate glasses doped with silver and copper bromide, in Sbornik materialov VII Vserossiiskoi konferentsii po nanomaterialam NANO-2020 (Proceedings of the 7th All-Russia Conference on Nanomaterials NANO-2020, May 18–22, 2020, Moscow), Moscow: IMET RAN, 2020, pp. 252–254.

  22. Podlipensky, A.V., Grebenev, V., Seifert, G., and Graener, H., Ionization and photomodification of Ag nanoparticles in sodalime glass by 150 fs laser irradiation: A luminescence study, J. Lumin., 2004, vol. 109, pp. 135–142.

    Article  CAS  Google Scholar 

  23. Doycho, I.K., Gevelyuk, S.A., Ptashchenko, O.O., Rysiakiewicz-Pasek, E., Tolmachova, T.M., Tyurin, O.V., and Zhukov, S.O., Photoluminescence features of AgBr nanoparticles formed in porous glass matrices, Opt. Appl., 2010, vol. 40, no. 2, pp. 323–332.

    CAS  Google Scholar 

  24. Girsova, M.A., Golovina, G.F., Anfimova, I.N., and Kurilenko, L.N., Properties of bismuth-containing high-silica glass depending on the bismuth concentration and heat treatment. I. Spectral-optical properties, Glass Phys. Chem., 2018, vol. 44, no. 5, pp. 381–387.

    Article  CAS  Google Scholar 

  25. Stolper, E., Water in silicate glasses: An infrared spectroscopic study, Contrib. Mineral. Petrol., 1982, vol. 81, no. 1, pp. 1–17.

    Article  CAS  Google Scholar 

  26. Moriya, Y. and Nogami, M., Hydration of silicate glass in steam atmosphere, J. Non-Cryst. Solids, 1980, vols. 38–39, pp. 667–672.

    Article  Google Scholar 

  27. Bartholomew, R.F., Butler, B.L., Hoover, H.L., and Wu, C.K., Infrared spectra of a water-containing glass, J. Am. Ceram. Soc., 1980, vol. 63, nos. 9–10, pp. 481–485.

    Article  CAS  Google Scholar 

  28. Balzer, R., Behrens, H., Schuth, S., Waurischk, T., Reinsch, S., Muller, R., Fechtelkord, M., and Deubener, J., The influence of H2O and SiO2 on the structure of silicoborate glasses, J. Non-Cryst. Solids, 2019, vol. 519, p. 119454.

    Article  CAS  Google Scholar 

  29. Ventura, G.D., Radica, F., Bellatreccia, F., Cavallo, A., Capitelli, F., and Harley, S., Quantitative analysis of H2O and CO2 in cordierite using polarized FTIR spectroscopy, Contrib. Mineral. Petrol., 2012, vol. 164, pp. 881–894.

    Article  Google Scholar 

  30. Panchenko, T.V., Photochromism in Cu and Ag doped Bi12SiO20 crystals, Phys. Solid State, 2008, vol. 50, no. 10, pp. 1900–1907.

    Article  CAS  Google Scholar 

  31. Davis, K.M. and Tomozawa, M., An infrared spectroscopic study of water-related species in silica glasses, J. Non-Cryst. Solids, 1996, vol. 201, pp. 177–198.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank A.V. Antonov, research associate at the A.P. Karpinsky Russian Geological Research Institute (St. Petersburg, Russia), for analyzing the nanocomposite materials by energy-dispersive X-ray spectroscopy. We thank S.V. Firstov, Dr. Sci. (Phys.–Math.), Sientific Center of Fiber Optics, Russian Academy of Siences (Moscow, Russia), for studying the synthesized nanocomposite materials by luminescence spectroscopy. The general formulation of the research problem and discussion of the results were carried out with the cooperation of T.V. Antropova, Dr. Sci. (Chem.), Grebenshchikov Institute of Glass Chemistry, Russian Academy of Sciences (St. Petersburg, Russia).

Funding

This work was supported by the Russian Foundation for Basic Research as part of project no. 18-03-01206 (Synthesis and Study of NCMs Based on PG-8V-NT Matrices) and the Government of St. Petersburg, which provided a subsidy from the Committee on Science and Higher Education for 2018 (Synthesis and Study of NCMs Based on PG-NFF Matrices). Samples of the two-phase and porous glass materials were prepared as part of a state assignment of the Grebenshchikov Institute of Glass Chemistry, Russian Academy of Sciences (topic under state registration no. AAAA-A19-119022290087-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Girsova.

Ethics declarations

The authors declare to have no conflict of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girsova, M.A., Golovina, G.F., Kurilenko, L.N. et al. Spectral-Luminescent Properties of Nanocomposite Materials Based on Porous Silicate Glasses Doped by Silver and Copper Bromides. Glass Phys Chem 46, 531–540 (2020). https://doi.org/10.1134/S1087659620060085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659620060085

Keywords:

Navigation