Skip to main content
Log in

Immobilization of Eu3+ Ions in Zeolite Matrices in Order to Develop Solid-State Radioluminescent Light Sources

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Immobilization of europium ions in the Rho, Beta, and paulingite zeolites using ion exchange is studied in order to search for the optimal alumosilicate matrix for the development of solid-state radioluminescent light sources. The phase composition, thermal stability, moisture adsorption ability, and spectral characteristics of the specimens are studied. It is determined that Beta zeolite possesses the highest sorption capacity, high chemical and thermal stability, a significant constant capacity by water, and the highest cation-exchange characteristics regarding Eu3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. Mesopores represent pores that are 2–50 nm in size (IUPAC).

REFERENCES

  1. Renschler, C.L., Gill, J.T., Walko, R.J., Ashley, C.S., Shepodd, T.J., Reed, S.T., Malone, G.M., Leonard, L.E., Ellefson, R.E., and Clough, R.L., Solid state radioluminescent lighting, Radiat. Phys. Chem., 1994, vol. 44, no. 6, pp. 629–644.

    Article  CAS  Google Scholar 

  2. Solid-state radioluminescent zeolite-containing compositions and light sources, US Patent no. 5100587, 1992, p. 6.

  3. Tompkins, J.A., Tritide based radioluminescent light sources in radioluminescent lighting technology, in Proceedings of the Technology Transfer Conference, U. S. DOE Annapolis, MD,1990, pp. 27–31.

  4. Mikhal’chenko, G.A., Radiolyuminestsentnye izluchateli (Radioluminescent Emitters), Moscow: Energoatomizdat, 1988, p. 152.

  5. Ellefson, R.E., Gill, J.T., Walko, R.J., Ashley, C.S., and Leonard, L.E., Mon tritiation of aerogel matrices: T2O, tritiated organics and tritium exchange on aerogel surfaces, in Proceedings of the Technology Transfer Conference, U. S. DOE Annapolis MD,1990, pp. 272–274.

  6. Garney, B.W., Development of the zeolite analcime for tritiated water storage, Fusion Technol., 1992, vol. 21, no. 2, pp. 604–611.

    Article  CAS  Google Scholar 

  7. Lapatin, N.A., Puzyk, M.V., and Pak, V.N., Synthesis and spectral-luminescent properties of zinc sulfide nanoparticles in a perfluorosulfonic membrane, Russ. J. Gen. Chem., 2018, vol. 88, no. 6, pp. 1210–1212.

    Article  CAS  Google Scholar 

  8. Gaft, M., Reisfeld, R., and Panczer, G., Modern Luminescence Spectroscopy of Minerals and Materials, Berlin: Springer, 2005, pp. 490–491.

    Google Scholar 

  9. Bel’tyukova, S.V., Tselik, E.I., Egorova, A.V., and Teslyuk, O.I., Luminescent properties of zeolite modified by Eu(III) and Tb(III) complexes, J. Appl. Spectrosc., 2003, vol. 70, no. 2, pp. 307–310.

    Article  Google Scholar 

  10. Binnemans, K., Lanthanide-based luminescent hybrid materials, Chem. Rev., 2009, vol. 109, no. 9, pp. 4283–4374.

    Article  CAS  Google Scholar 

  11. Liu, H., Song, H., Li, S., Ren, X., Lu, S., Yu, H., Pan, G., Zhang, H., Hu, L., Dai, Q., Qin, R., Yu, J., Wang, G., and Jiang, J., Preparation, characterization and photoluminescence properties of ternary europium complexes Eu(DBM)3 bath encapsulated into aluminosilicate, J. Nanosci. Nanotechnol., 2008, vol. 8, pp. 3959–3966.

    Article  CAS  Google Scholar 

  12. Nakamura, Ya., Hasaegawa, M., and Katsuki, K., Microenvironments in faujasite-type Fe–Al zeolites probed by europium luminescence, Chem. Lett., 2005, vol. 34, p. 490.

    Article  CAS  Google Scholar 

  13. Yang, X., Tiam, T.S., Yu, X., Demir, H.V., and Sun, X.W., Europium (II)-doped microporous zeolite derivatives with enhanced photoluminescence by isolating active luminescence centers, ACS Appl. Mater. Interfaces, 2011, vol. 3, pp. 4431–4436.

    Article  CAS  Google Scholar 

  14. Ropp, R.C., Luminescence and the solid state, Studies Inorg. Chem., 2004, vol. 21, pp. 615–702.

    Article  Google Scholar 

  15. A method of obtaining a synthetic analogue of Paulingite zeolite, RF Patent no. 2507000, Byull. Izobret., 2014, no. 36, p. 5.

  16. The method of obtaining synthetic zeolite structural type Rho, RF Patent no. 2580723, Byull. Izobret., 2016, no. 10, p. 9.

  17. Robson, H., Verified Synthesis of Zeolitic Materials, Amsterdam: Elsevier, 2001, p. 272.

    Google Scholar 

  18. Zheng, X., Wang, M., and Li, Q., Synthesis and luminescent properties of europium complexes covalently bonded to hybrid materials based on MCM-41 and poly(ionic liquids), Materials (Basel), vol. 11, no. 5, p. 677. https://doi.org/10.3390/ma11050677

  19. Solid-state radioluminescent compositions, US Patent no. 4997597, 1991, p. 6.

  20. Breck, D.W., Zeolite Molecular Sieves, New York: Wiley, 1974.

    Google Scholar 

  21. Zeolite Chemistry and Catalysis, Rabo, J.A., Ed., Washington D.C.: Am. Chem. Soc., 1976, vol. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Ul’yanova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by A. Muravev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ul’yanova, N.Y., Zelenina, E.V., Ugolkov, V.L. et al. Immobilization of Eu3+ Ions in Zeolite Matrices in Order to Develop Solid-State Radioluminescent Light Sources. Glass Phys Chem 45, 537–544 (2019). https://doi.org/10.1134/S1087659619060257

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659619060257

Keywords:

Navigation