Skip to main content
Log in

Cationic ring opening polymerization of octamethylcyclotetrasiloxane initiated by solid superacid

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Kinetics of the cationic ring opening polymerization of octamethylcyclotetrasiloxane (D4) in bulk initiated by solid superacid was studied. The optimalizing experimental conditions were based on preliminary experiments. Higher temperature was beneficial to equilibrium conversion while stirring intensity beyond a certain level displayed no obvious effect on the rate of the reaction. A kinetic model was elicited and kinetic parameters were obtained through optimization. The calculated activation energies were 32.6 and 34.1 kJ mol–1 for D4 and all other annuluses (Dx), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mark, J.E., Some interesting things about polysiloxanes, Acc. Chem. Res., 2004, vol. 37, no. 12, pp. 946–953.

    Article  Google Scholar 

  2. Pouget, E., Tonnar, J., Lucas, P., Lacroix-Desmazes, P., Ganachaud, F., and Boutevin, B., Well-architectured poly(dimethylsiloxane)-containing copolymers obtained by radical chemistry, Chem. Rev., 2010, vol. 110, no. 3, pp. 1233–1277.

    Article  Google Scholar 

  3. Saam, J.C., Formation of linear siloxane polymers, Adv. Chem. Ser., 1990, vol. 224, pp. 71–90.

    Article  Google Scholar 

  4. Clarson, S.J., Investigations of the properties of cyclic poly(dimethylsiloxane), New J. Chem., 1993, vol. 17, nos 10-11, pp. 711–714.

    Google Scholar 

  5. Weber, W.P. and Cai, G.P., Anionic and cationic ringopening polymerization of 2,2-divinyl-4,4,6,6-tetramethylcyclotrisiloxane. Synthesis of regular poly[2,2bis(perfluoroalkyl-1'H,1'H,2'H,2'H-dimethylsilylethyl)-4,4,6,6-tetramethyltrisiloxanes] by chemical modification of regular poly(2,2-divinyl-4,4,6,6-tetramethyltrisiloxane), Macromolecules, 2001, vol. 34, no. 13, pp. 4355–4360.

    Article  Google Scholar 

  6. Gadda, T.M., Nelson, A.K., and Weber, W.P., Selectivity in anionic and cationic ring-opening polymerizations of tetramethyl-1-(3'-trifluoromethylphenyl)-1phenylcyclotrisiloxane and tetramethyl-1-[3',5'-bis(trifluoromethyl)phenyl]-1-phenylcyclotrisiloxane, J. Polym. Sci., Part A: Polym. Chem., 2004, vol. 42, no. 20, pp. 5235–5243.

    Article  Google Scholar 

  7. Zhang, Y., Zhang, Z.J., Wang, Q., and Xie, Z.M., Kinetics of the anionic ring-opening polymerization of octamethylcyclotetrasiloxane initiated by potassium isopropoxide, J. Appl. Polym. Sci., 2006, vol. 102, no. 4, pp. 3510–3516.

    Article  Google Scholar 

  8. Mohoric, I. and Sebenik, U., Semibatch anionic ringopening polymerization of octamethyl-cyclotetrasiloxane in emulsion, Polymer, 2011, vol. 52, no. 20, pp. 4423–4428.

    Article  Google Scholar 

  9. Mohoric, I. and Sebenik, U., Anionic ring-opening polymerization of octamethylcyclotetrasiloxane in emulsion above critical micelle concentration, Polymer, 2011, vol. 52, no. 5, pp. 1234–1240.

    Article  Google Scholar 

  10. Mohoric, I. and Sebenik, U., Semibatch anionic ringopening polymerization of octamethylcyclotetrasiloxane in emulsions: effect of the amount of seed polymer particles, Polym. Int., 2013, vol. 62, no. 7, pp. 1022–1028.

    Google Scholar 

  11. Toskas, G., Besztercey, G., Moreau, M., Masure, M., and Sigwalt, P., Cationic polymerization of hexamethylcyclotrisiloxane by trifluoromethanesulfonic acid and its derivatives. 2. Reaction involving activated trifluoromethylsulfonates, Macromol. Chem. Phys., 1995, vol. 196, no. 9, pp. 2715–2735.

    Article  Google Scholar 

  12. Jallouli, A. and Saam, J.C., Silyl triflate-initiated ringopening polymerizations of cyclosiloxanes, J. Inorg. Organomet., vol. 8, no. 4, pp. 179–203.

  13. Kazmierski, K., Cypryk, M., and Chojnowski, J., Cationic ring opening polymerization of cyclotrisiloxanes with mixed siloxane units, Abstr. Pap. Am. Chem. Soc., vol. 215, pp. U387–U387.

  14. Mougin, N., Rempp, P., and Gnanou, Y., Synthesis and characterization of polysiloxane-polyamide block and graft-copolymers, J. Polym. Sci., Part A: Polym. Chem., 1993, vol. 31, no. 5, pp. 1253–1260.

    Article  Google Scholar 

  15. Vaidya, A.A. and Kumar, V.G., Silica-alumina catalysts for polymerization of cyclic siloxanes, J. Appl. Polym. Sci., 1998, vol. 70, no. 4, pp. 629–635.

    Article  Google Scholar 

  16. Vallejo-Montesinos, J., Villegas, A., Jacobo-Azuara, A., Martinez, J.M., Ramirez-Oliva, E., RomeroIzquierdo, A., and Cervantes, J., Synthetic and natural silica-aluminates as inorganic acidic catalysts in ring opening polymerization of cyclosiloxanes, Appl. Organomet. Chem., 2012, vol. 26, no. 7, pp. 362–368.

    Article  Google Scholar 

  17. Chen, B., Zhan, X., Yi, L., and Chen, F., Cationic ring opening polymerization of octamethylcyclotetrasiloxane initiated by acid treated bentonite, Chin. J. Chem. Eng., 2007, vol. 15, no. 5, pp. 661–665.

    Article  Google Scholar 

  18. Grubisic, Z., Rempp, P., and Benoit, H., A universal calibration for gel permeation chromatography, J. Polym. Sci., Part B: Polym. Lett., 1967, vol. 5, no. 9, pp. 753–759.

    Article  Google Scholar 

  19. Dvornic, P.R., Jovanovic, J.D., and Govedarica, M.N., On the critical molecular chain length of polydimethylsiloxane, J. Appl. Polym. Sci., 1993, vol. 49, no. 9, pp. 1497–1507.

    Article  Google Scholar 

  20. Rudin, A. and Hoegy, H.L.W., Universal calibration in GPC, J. Polym. Sci., Part A: Polym. Chem., 1972, vol. 10, no. 1, pp. 217–235.

    Article  Google Scholar 

  21. Chen, J., Sun, R., Han, M., Guo, W., and Wang, J.T., Solid superacid S2O82-/TiO2 supported on MCM-41: preparation and catalytic performance for esterification, Chin. J. Inorg. Chem., 2006, vol. 22, no. 3, pp. 421–425.

    Google Scholar 

  22. Raj, K.J.A. and Viswanathan, B., Single-step synthesis and structural study of mesoporous sulfated titania nanopowder by a controlled hydrolysis process, ACS Appl. Mater. Interfaces, 2009, vol. 1, no. 11, pp. 2462–2469.

    Article  Google Scholar 

  23. Zhang, L.Y., Han, C.Y., Du, D.Q., Zhang, Y.Y., Xu, S.W., and Luo, Y.M., Sulfated zirconia—a superacid, Prog. Chem., 2011, vol. 23, no. 5, pp. 860–873.

    Google Scholar 

  24. Zhu, M.L., Li, S., Li, Z.X., Lu, X.M., and Zhang, S.J., Investigation of solid catalysts for glycolysis of polyethylene terephthalate, Chem. Eng. J., 2012, vol. 185, pp. 168–177.

    Article  Google Scholar 

  25. Hurd, D.T., On the mechanism of the acid-catalyzed rearrangement of siloxane linkages in organopolysiloxanes, J. Am. Chem. Soc., 1955, vol. 77, no. 11, pp. 2998–3001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengjian Qi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Cao, D., Sun, Y. et al. Cationic ring opening polymerization of octamethylcyclotetrasiloxane initiated by solid superacid. Glass Phys Chem 42, 307–311 (2016). https://doi.org/10.1134/S1087659616030184

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659616030184

Keywords

Navigation