Skip to main content
Log in

Features of the synthesis and the study of nanocrystalline cobalt-nickel spinel

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

A nanocrystalline compound nickel cobaltite (NiCo2O4) with the average size of crystals of ∼20 nm at 700°C has been synthesized using the method of combined crystallization of solutions of nitrates with the subsequent thermal and ultrasonic treatment. The optimal sintering mode of the NiCo2O4 powder (1300°C, 2 h, air) has been selected, and ceramics (60–65 nm) with open porosity of 25–30% have been prepared. The temperature and frequency dependences of the electrical conductivity of nickel cobaltite have been studied. It has been assumed that the high values of the electrical conduction and pseudo-capacity of NiCo2O4 are due to the variable valence of Ni and Co in oxides. It is recommended to use cobaltite nickel as an electrode material of a supercapacitor and a catalyst of the oxygen isolation in fuel elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shevchenko, V.Ya., Research, development, and innovation in the field of ceramic and glass materials, in Steklo i keramika XXI: Perspektivy razvitiya (Glass and Ceramics XXI: Prospects of the Development), Zhabrev, V.A., Konakov, V.G., and Shultz, M.M., Eds., St. Petersburg: Yanus, 2001, pp. 179191.

    Google Scholar 

  2. Barinov, S.M. and Shevchenko, V.Ya., New ceramics—The state and prospects of the development, Zh. Vses. Khim. O-va im. D.I. Mendeleeva, 1990, vol. 35, no. 6, pp. 708–715.

    Google Scholar 

  3. Shevchenko, V.Ya., Structural chemistry of the nanoworld—A new page of the inorganic chemistry, Glass Phys. Chem., 2011, vol. 37, no. 5, pp. 457–484.

    Article  Google Scholar 

  4. Shevchenko, V.Ya., Investigation in the field of the nanoworld and nanotechnologies, Ross. Nanotekhnol., 2008, vol. 3, nos. 11–12, pp. 36–45.

    Google Scholar 

  5. Kozlov, N.S., Cherches, Kh.A., Maiorova, M.V., and Karizno, A.U., Kataliticheskie svoistva soedinenii redkozemel’nykh metallov (Catalytic Properties of Rare-Earth Metal Compounds), Minsk: Nauka i Tekhnika, 1977.

    Google Scholar 

  6. Guene, M., Diagne Abdou Aziz, Fall Modou, Dieng Mor Mareme, and Poillerat, G., Preparation of nickel-cobalt spinel oxides NixCo3 − x O4: Comparison of two physical properties stemming from four different preparation methods and using carbon paste electrode, Bull. Chem. Soc. Ethiop., 2007, vol. 21, no. 2, pp. 255–262.

    Article  Google Scholar 

  7. Krylov, O.V., Kataliz nemetallami (Catalysis by Nonmetals), Leningrad: Khimiya, 1967.

    Google Scholar 

  8. Tharayil, N., Raveendran, R., Vaidyan, A.V., and Chithra, P.G., Optical, electrical, and structural studies of nickelcobalt oxide nanoparticles, Int. J. Econ. Manage. Sci., 2008, vol. 15, no. 6, pp. 489–496.

    Google Scholar 

  9. Guzman, I.Ya., Vysokoogneupornaya poristaya keramika (Highly Refractory Porous Ceramics), Moscow: Stroiizdat, 1969.

    Google Scholar 

  10. Shevchenko, V.Ya., The concept of the development of nanotechnologies in the North-West Federal District, Nanotekhnol. Ekol. Proizvod., 2010, no. 3, pp. 106–110.

    Google Scholar 

  11. Vasserman, I.M., Khimicheskoe osazhdenie iz rastvorov (Chemical Precipitation from Solutions), Leningrad: Khimiya, 1980.

    Google Scholar 

  12. Gleiter, H., Nanocrystalline materials, Prog. Mater. Sci., 1989, vol. 33, no. 4, pp. 223–315.

    Article  Google Scholar 

  13. Belyakov, A.V., Problems in technology of nanoceramics, Tekh. Tekhnol. Silik., 2003, nos. 3–4, pp. 16–28.

    Google Scholar 

  14. Tikhonov, P.A., Arsent’ev, M.Yu., Kalinina, M.V., Popov, V.P., Andreeva, N.S., Podzorova, L.I., and Il’icheva, A.A., Preparation and properties of ceramic composites with oxygen ionic conductivity in the ZrO2-CeO2-Al2O3 and ZrO2-Sc2O3-Al2O3 systems, Glass Phys. Chem., 2008, vol. 34, no. 3, pp. 319–323.

    Article  Google Scholar 

  15. Kosacki, I. and Anderson, H.U., Microstructureproperty relationship in nanocrystalline oxide thin films, Ionics, 2000, vol. 6, nos. 3–4, pp. 294–311.

    Article  Google Scholar 

  16. Strekalovskii, V.N., Polezhaev, Yu.M., and Pal’guev, S.F., Oksidy s primesnoi razuporyadochennost’yu: Sostav, struktura, fazovye prevrashcheniya (Oxides with Impurity Disordering: Composition, Structure, and Phase Transformations), Moscow: Nauka, 1987.

    Google Scholar 

  17. Khasanov, O.L., Dvilis, E.S., Polisadova, V.V., and Zykova, A.P., Effekty moshchnogo ul’trazvukovogo vozdeistviya na strukturu i svoistva nanomaterialov. Uchebnoe posobie (Effects of High-Power Ultrasonic Treatment on the Structure and Properties of Nanomaterials: A Textbook), Tomsk: Tomsk Polytechnic University, 2008.

    Google Scholar 

  18. American Society for Testing and Materials (ASTM) Powder Diffraction File, Newtown Square, Pennsylvania, United States: Joint Committee for Powder Diffraction Standards-International Centre for Diffraction Data (JCPDS-ICDD).

  19. Ormont, B.F., Vvedenie v fizicheskuyu khimiyu i kristallokhimiyu poluprovodnikov (Introduction to the Physical Chemistry and Crystal Chemistry of Semiconductors), Moscow: Vysshaya Shkola, 1973.

    Google Scholar 

  20. GOST (State Standard of the Soviet Union), Moscow: Izd. Standartov, 1981.

  21. Tikhonov, P.A., Kuznetsov, A.K., and Kravchinskaya, M.V., Instrument for measuring the electronic and ionic conductivities of oxide materials, Zavod. Lab., 1978, no. 7, pp. 837–838.

    Google Scholar 

  22. Arsent’ev, M.Yu., Tikhonov, P.A., Kalinina, M.V., Tsvetkova, I.N., and Shilova, O.A., Synthesis and physicochemical properties of the electrode and electrolyte nanocomposites for supercapacitors, Fiz. Khim. Stekla, 2012, vol. 38, no. 5, pp. 653–664.

    Google Scholar 

  23. Duran, P., Villegas, M., and Capel, F., Low-temperature sintering and microstructural development of nanocrystalline Y-TZP powders, J. Eur. Ceram. Soc., 1996, vol. 16, no. 9, pp. 945–952.

    Article  Google Scholar 

  24. Owings, R.R., Polarons and Impurities in Nickel-Cobalt Oxide, Gainesville, Florida, United States: University of Florida, 2003.

    Google Scholar 

  25. Pivovarova, A.P., Strakhov, V.I., and Popov, V.P., On the mechanism of electronic conductivity in lanthanum metaniobate, Tech. Phys. Lett., 2002, vol. 28, no. 10, pp. 815–817.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kovalenko.

Additional information

Original Russian Text © A.S. Kovalenko, O.A. Shilova, L.V. Morozova, M.V. Kalinina, I.A. Drozdova, M.Yu. Arsent’ev, 2014, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovalenko, A.S., Shilova, O.A., Morozova, L.V. et al. Features of the synthesis and the study of nanocrystalline cobalt-nickel spinel. Glass Phys Chem 40, 106–113 (2014). https://doi.org/10.1134/S1087659614010131

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659614010131

Keywords

Navigation