Skip to main content
Log in

Influence of synthesis of physicochemical parameters on growth of Ni3Si2O5(OH)4 nanotubes and their filling with solutions of hydroxides and chlorides of alkaline metals

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The growth processes of nanotubes of the Ni3Si2O5(OH)4 composition with a chrysotile structure have been studied under hydrothermal conditions for both axial and radial directions. The tubes of optimal sizes needed to fill them with liquid substances were obtained by the well-directed control of the synthesis physicochemical parameters. The processes responsible for the filling of nanotubes with solutions of hydroxides and chlorides of alkaline metals (Na, K, and Cs) and for their interactions with the tubes have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lozovik, Yu.E. and Popov, A.M., Properties and Nanotechnological Applications of Nanotubes, Phys.—Usp., 2007, vol. 50, no. 7, pp. 749–761.

    Article  CAS  Google Scholar 

  2. Tenner, R. and Rao, C.N.R., Inorganic Nanotubes, Philos. Trans. R. Soc. London, Ser. A, 2004, vol. 362, p. 2099.

    Article  Google Scholar 

  3. Rao, C.N.R. and Nath, M., Inorganic Nanotubes, Dalton Trans., 2003, no. 1, pp. 1–24.

  4. Ivanovskii, A.L., Non-Carbon Nanotubes: Synthesis and Simulation, Usp. Khim., 2002, vol. 71, no. 3, pp. 203–225.

    Article  Google Scholar 

  5. Zakharova, G.S., Volkov, V.L., Ivanovskaya, V.V., and Ivanovskii, A.L., Nanotubes and Related Nanostructures of d-Metal Oxides: Synthesis and Computer Design, Usp. Khim., 2005, vol. 74, no. 7, pp. 651–685.

    Article  Google Scholar 

  6. Jancar, B. and Suvorov, D., The Influence of Hydrothermal-Reaction Parameters on the Formation of Chrysotile Nanotubes, Nanotecnology, 2006, vol. 17, pp. 25–29.

    Article  CAS  Google Scholar 

  7. Falini, G., Foresti, E., Gazzano, M., Gualtieri, A.F., Leoni, M., Lesci, I.G., and Roveri, N., Tubular-Shaped Stoichiometric Chrysotile Nanocrystals, Chem.—Eur. J., 2004, vol. 10, no. 12, pp. 3043–3049.

    Article  CAS  Google Scholar 

  8. Grigorieva, A.V., Anikina, A.V., Tarasov, A.B., Goodilin, E.A, Knot’ko, A.V., Volkov, V.V., Dembo, K.A., and Tretyakov, Yu.D., Micromorphology and Structure of Vanadium Oxide Nanotubes, Dokl. Chem., 2006, vol. 410, part 2, pp. 165–169.

    Article  Google Scholar 

  9. Korytkova, E.N. and Pivovarova, L.N., Hydrothermal Synthesis of Nanotubes Based on (Mg,Fe,Co,Ni)3Si2O5(OH)4 Hydrosilicates, Glass Phys. Chem., 2010, vol. 36, no. 1, pp. 53–60.

    Article  CAS  Google Scholar 

  10. Byrappa, K. and Adschiri, T., Hydrothermal Technology for Nanotechnology, Prog. Cryst. Growth Charact. Mater., 2007, vol. 53, pp. 117–166.

    Article  CAS  Google Scholar 

  11. Gofman, I.V., Svetlichnyi, V.M., Yudin, V.E., Dobrodumov, A.V., Didenko, A.L., Abalov, I.V., Korytkova, E.N., Egorov, A.I., and Gusarov, V.V., Modification of Films of Heat-Resistant Polyimides with Additions of Hydrosilicate and Carbon Nanoparticles of Various Geometries, Russ. J. Gen. Chem., 2007, vol. 77, no. 7, pp. 1158–1163.

    Article  CAS  Google Scholar 

  12. Kononova, S.V., Korytkova, E.N., Maslennikova, T.P., Romashkova, K.A., Kruchinina, E.V., Potokin, I.L., and Gusarov, V.V., Polymer-Inorganic Nanocomposites Based on Aromatic Polyamidoimides Effective in the Processes of Liquids Separation, Russ. J. Gen. Chem., 2010, vol. 80, no. 6, pp. 1136–1142.

    Article  CAS  Google Scholar 

  13. Eletskii, A.V., Sorption Properties of Carbon Nanostructures, Phys.—Usp., 2004, vol. 47, no. 11, pp. 1119–1154.

    Article  CAS  Google Scholar 

  14. Bogomolov, V.N., Liquids in Ultrathin Channels (Filament and Cluster Crystals), Phys.—Usp., 1978, vol. 21, no. 1, pp. 77–83.

    Article  Google Scholar 

  15. Kuzmerov, Yu.A., Smirnov, I.A., Firsov, Yu.A., Parfen’eva, L.S., Misiorek, H., Muscha, J., and Jezowsky, A., Thermal Conductivity of Ultrathin InSb Semiconductor Nanowires with Properties of the Luttinger Liquid, Phys. Solid State, 2006, vol. 48, no. 8, pp. 1584–1590.

    Article  Google Scholar 

  16. Métraux, C., Grobéty, B., and Ulmer, P., Filling of Chrysotile Nanotubes with Metals, J. Mater. Res., 2002, vol. 17, no. 5, pp. 1129–1135.

    Article  Google Scholar 

  17. Maslennikova, T.P., Korytkova, E.N., and Gusarov, V.V., Interaction of Mg3Si2O5(OH)4 Nanotubes with Potassium Hydroxide, Russ. J. Appl. Chem., 2008, vol. 81, no. 3, pp. 375–379.

    Article  CAS  Google Scholar 

  18. Maslennikova, T.P., Korytkova, E.N., Drozdova, I.A., and Gusarov, V.V., Interaction of Potassium Chloride Aqueous Solution Mg3Si2O5(OH)4 with the Nanotubes Based on Magnesium Hydrosilicate, Russ. J. Appl. Chem., 2009, vol. 82, no. 3, pp. 352–355.

    Article  CAS  Google Scholar 

  19. Maslennikova, T.P. and Korytkova, E.N., Aqueous Solutions of Cesium Salts and Cesium Hydroxide in Hydrosilicate Nanotubes of the Mg3Si2O5(OH)4 Composition, Glass Phys. Chem., 2010, vol. 36, no. 3, pp. 345–350.

    Article  CAS  Google Scholar 

  20. Maslennikova, T.P. and Korytkova, E.N., Regularities of the Filling of Mg3Si2O5(OH)4 Hydrosilicate Nanotubes with Solutions of Sodium Hydroxide and Sodium Chloride, Glass Phys. Chem., 2011, vol. 37, no. 4, pp. 418–425.

    Article  CAS  Google Scholar 

  21. Korytkova, E.N., Maslov, A.V., Pivovarova, L.N., Polegotchenkova, Yu.V., Povinich, V.F., and Gusarov, V.V., Synthesis of Nanotubular Mg3Si2O5(OH)4-Ni3Si2O5(OH)4 Silicates at Elevated Temperatures and Pressures, Inorg. Mater., 2005, vol. 41, no. 7, pp. 743–749.

    Article  CAS  Google Scholar 

  22. Korytkova, E.N., Pivovarova, L.N., Drozdova, I.A., and Gusarov, V.V., Synthesis of Nanotubular Nickel Hydrosilicates and Nickel-Magnesium Hydrosilicates under Hydrothermal Conditions, Glass Phys. Chem., 2005, vol. 31, no. 6, pp. 797–802.

    Article  CAS  Google Scholar 

  23. Korytkova, E.N., Maslov, A.V., Pivovarova, L.N., Drozdova, I.A., and Gusarov, V.V., Formation of Mg3Si2O5(OH)4 Nanotubes under Hydrothermal Conditions, Glass Phys. Chem., 2004, vol. 30, no. 1, pp. 51–55.

    Article  CAS  Google Scholar 

  24. Goldstein, J., Newbury, D., Joy, D.C., Lyman, C.E., Echlin, P., Lifshin, E., Sawyer, L., and Michael, J.R., Scanning Electron Microscopy and X-ray Microanalysis, New York: Plenum, 1981. Translated under the title Rastrovaya elektronnaya mikroskopiya i rentgenovskii mikroanaliz, Moscow: Mir, 1984, vol. 1.

    Book  Google Scholar 

  25. Deryuzhkina, V.I. and Buzanova, G.N., Metody opredeleniya udel’noi poverkhnosti katalizatorov (Methods for Determination of the Specific Surface Area of Catalysts), Leningrad: Leningrad Institute of Technology named by Lensovet, 1987.

    Google Scholar 

  26. Brykov, A.S., Silikatnye rastvory i ikh primenenie. Uchebnoe posobie (Silicate Solutions and Their Applications: A Textbook), St. Petersburg: Saint-Petersburg State Institute of Technology (Technical University), 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Maslennikova.

Additional information

Original Russian Text © T.P. Maslennikova, E.N. Korytkova, 2013, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maslennikova, T.P., Korytkova, E.N. Influence of synthesis of physicochemical parameters on growth of Ni3Si2O5(OH)4 nanotubes and their filling with solutions of hydroxides and chlorides of alkaline metals. Glass Phys Chem 39, 67–72 (2013). https://doi.org/10.1134/S1087659613010082

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659613010082

Keywords

Navigation