Skip to main content

Advertisement

Log in

Comparison of the Growth of \({\text {TiO}}_{2}\) Nanotubes in Different Solutions

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The kinetics of growth of tubular nanostructures of titanium dioxide (\({\text {TiO}}_{2}\)) obtained by means of the physic-chemical method of electro position under potentiostatic conditions is studied. For this investigation, four tests were carried out where some synthesis parameters were varied in chemical solution: water/fluorhydric acid/ammonium fluoride/ethylene glycol \((\text {H}_{2} \text {O/HF/NH}_{4}\text {F/EG})\) as well as the conditions of anodization. Therefore, the chemical attack in the anodization process is produced by the \(\text {NH}_{4}\text {F}\) and \(\text {HF}\) ions. The morphology of the resulting nanotubes was analyzed through scanning electron microscopy (SEM). The average length of the nanotubes was established, with a maximum value of 980 nm. By means of X-ray diffraction of the samples the structure was analyzed, obtaining a mixed phase of anatase and titanium. Using ultraviolet–visible spectroscopy (UV–Vis), the energy gap of the tests was found at different times of anodization. At 60 min of anodization, the energy gap of the samples varied between 3.56 and 3.68 eV. For a time of 30 min anodization, the energy gap of the samples varied between 3.58 and 3.63 eV with the same parameters of chemical synthesis. With obtaining of the curves of the current as a function of the time of anodization (I vs. t), the different stages of growth of the nanotubes and the regions that these stages define were determined. Analyzing of the behavior the current–time graphs and SEM measurements, it was observed that the best solution of the 4 tests used in this work was that of test 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H. Tsuchiya, P. Schmuki, Electrochem. Commun. 6, 1131–1134 (2004)

    Article  CAS  Google Scholar 

  2. W.-J. Lee, W.H. Smyrl, Electrochem. Solid State Lett. 8, B7–B9 (2005)

    Article  CAS  Google Scholar 

  3. H. Tsuchiya, J.M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna, P. Schmuki, Electrochem. Commun. 7, 295–298 (2005)

    Article  CAS  Google Scholar 

  4. N.R. de Tacconi, C.R. Chenthamarakshan, G. Yogeeswaran, A. Watcharenwong, R.S. de Zoysa, N.A. Basit, K. Rajeshwar, J. Phys. Chem. B 110, 25347–25355 (2006)

    Article  Google Scholar 

  5. I. Sieber, H. Hildebrand, A. Friedrich, P. Schmuki, Electrochem. Commun. 7, 97–100 (2005)

    Article  CAS  Google Scholar 

  6. K.L. Robert, Electrochem. Commun. 7, 1190–1194 (2005)

    Article  Google Scholar 

  7. I. Sieber, B. Kannan, P. Schmuki, Electrochem. Solid State Lett. 8, J10–J12 (2005)

    Article  CAS  Google Scholar 

  8. H. El-Sayed, S. Singh, M.T. Greiner, P. Kruse, Nano Letters 6, 2995–2999 (2006)

    Article  CAS  Google Scholar 

  9. H. Tsuchiya, P. Schmuki, Electrochem. Commun. 7, 49–52 (2005)

    Article  CAS  Google Scholar 

  10. Y. Yang, S.P. Albu, D. Kim, P. Schmuki, Angew. Chem. Int. Ed. Engl. 50, 9071–9075 (2011)

    Article  CAS  Google Scholar 

  11. P. Roy, S. Berger, P. Schmuki, Angew. Chem. Int. Ed. Engl. 50, 2904–2939 (2011)

    Article  CAS  Google Scholar 

  12. M. Assefpour-Dezfuly, C. Vlachos, E.H. Andrews, J. Mater. Sci. 19, 3626–3639 (1984)

    Article  CAS  Google Scholar 

  13. J.J. Kelly, Electrochim. Acta 24, 1273 (1979)

    Article  CAS  Google Scholar 

  14. S. Oh, Ch. Daraio, Li-Han Chen, ThR Pisanic, R.R. Fiones, S. Jin, J. Biomed. Mater. Res. A 78, 97–103 (2006)

    Article  Google Scholar 

  15. K.C. Popat, M. Eltgroth, T.J. LaTempa, C.A. Grimes, T.A. Desai, Biomaterials 28, 4880–4888 (2007)

    Article  CAS  Google Scholar 

  16. S.C. Roy, M. Paulose, C.A. Grimes, Biomaterials 28, 4667–4672 (2007)

    Article  CAS  Google Scholar 

  17. G.K. Mor, M.A. Carvalho, O.K. Varghese, M.V. Pishko, C.A. Grimer, J. Mater. Res. 19, 628–634 (2004)

    Article  CAS  Google Scholar 

  18. O.K. Varghese, G.K. Mor, C.A. Grimes, M. Paulose, N. Mukherjee, J. Nanosci. Nanotechnol. 4, 733–737 (2004)

    Article  CAS  Google Scholar 

  19. M. Paulose, O.K. Varghese, G.K. Mor, C.A. Grimes, K.G. Ong, Nanotechnology 17, 398–402 (2006)

    Article  CAS  Google Scholar 

  20. O.K. Varghese, X. Yang, J. Kendig, M. Paulose, K. Zeng, C. Palmer, K.G. Ong, C.A. Grimes, Sens. Lett. 4, 120–128 (2006)

    Article  CAS  Google Scholar 

  21. O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, E.C. Dickey, C.A. Grimes, Adv. Mater. 15, 624–627 (2003)

    Article  CAS  Google Scholar 

  22. E. Sxennik, Z. Colak, N. Kilinc, O. Zafer Ziya, Int. J. Hydrog. Energy 35, 4420–4427 (2010)

    Article  Google Scholar 

  23. Q. Wang, Y.Z. Pan, S,S. Huang, S.T. Ren, P. Li, J.J. Li, Nnaotechnology 22(11), 025501 (2011)

    Article  CAS  Google Scholar 

  24. K. Shankar, G.K. Mor, H.E. Prakasam, S. Yoriya, M. Paulose, O.K. Varghese, C.A. Grimes, Nanotechnology 18(065707), 11 (2007)

    Google Scholar 

  25. M. Adachi, Y. Murata, I. Okada, Y. Yoshikawa, J. Electrochem. Soc. 150, G488–G493 (2003)

    Article  CAS  Google Scholar 

  26. S.K. Mohapatra, M. Misra, V.K. Mahajan, K,S. Raja, J. Phys. Chem. C 111(24), 8677–8685 (2007)

    Article  CAS  Google Scholar 

  27. O.K. Varghese, M. Paulose, T. LaTempa, Nano Letters 9(2), 731–737 (2009)

    Article  CAS  Google Scholar 

  28. Y. Wang, Z. Wang, Y. Xia, Electrochim. Acta 50, 5641–5646 (2005)

    Article  CAS  Google Scholar 

  29. Q. Wang, W. Zhenhai, J. Li, J. Nanosci. Nanotechnol. 7(9), 3328–3331 (2007)

    Article  CAS  Google Scholar 

  30. K.R. Reddy, V.G. Gomes, M. Hassan, Mater. Res. Express 1, 015012 (2014)

    Article  Google Scholar 

  31. K.R. Reddy, M. Hassan, V.G. Gomes, Appl. Catal. A 489, 1–16 (2015)

    Article  CAS  Google Scholar 

  32. R.K. Raghava, N. Kazuya, O. Tsuyoshi, M. Taketoshi, T. Donald, A,F. Akira, J. Nanosci. Nanotechnol. 11(4), 3692–3695 (2011)

    Article  Google Scholar 

  33. K.R. Reddya, K.V. Karthik, S.B.B. Prasad, S.K. Soni, H.M. Jeong, Anjanapura V. Raghu, Polyhedron 120, 169–174 (2016)

    Article  Google Scholar 

  34. M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.A. Latempa, A. Fitzgerald, C.G. Grimes, J. Phys. Chem. B 110, 16179–16184 (2006)

    Article  CAS  Google Scholar 

  35. S. Yoriya, H.E. Prakasam, O.K. Varghese, K. Shankar, M. Paulose, G.K. Mor, T.A. Latempa, C.A. Grimes, Sens. Lett. 4, 334–339 (2006)

    Article  CAS  Google Scholar 

  36. K. Shankar, G.K. Mor, H.E. Prakasam, S. Yoriya, M. Paulose, O.K. Varghese, C.A. Grimes, Nanotechnology 18, 065707 (2007)

    Article  Google Scholar 

  37. M. Paulose, K. Shankar, S. Yoriya, H.E. Prakasam, O.K. Varghese, G.K. Mor, T.J. Latempa, A. Fitzgerald, C.A. Grimes, J. Phys. Chem. B 110, 16179–16184 (2006)

    Article  CAS  Google Scholar 

  38. H.E. Prakasam, K. Shankar, M. Paulose, C.A. Grimes, J. Phys. Chem. C 111, 7235–7241 (2007)

    Article  CAS  Google Scholar 

  39. D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, E.C. Dickey, J. Mater. Res. 16, 3331–3334 (2001)

    Article  CAS  Google Scholar 

  40. R. Beranek, H. Hildebrand, P. Schmuki, Electrochem. Solid State Lett. 6, B12 (2003)

    Article  CAS  Google Scholar 

  41. V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.Y. Perrin, M. Aucouturier, Surf. Interface Anal. 27, 629 (1999)

    Article  CAS  Google Scholar 

  42. J.M. Macak, K. Sirotna, P. Schmuki, Electrochim. Acta 50, 3679 (2005)

    Article  CAS  Google Scholar 

  43. J.M. Macak, H. Tsuchiya, P. Schmuki, Angew. Chem. Int. Ed. 44, 2100–2102 (2005)

    Article  CAS  Google Scholar 

  44. S.P. Albu, A. Ghicov, J.M. Macak, P. Schmuki, Phys. Status Solidi 1, R65–R67 (2007)

    CAS  Google Scholar 

  45. L.V. Taveira, J.M. Macak, H. Tsuchiya, L.F. Dick, P. Schmuki, J. Electrochem. Soc. 152, B405 (2005)

    Article  CAS  Google Scholar 

  46. A. Ghicov, H. Tsuchiya, J.M. Macak, P. Schmuki, Electrochem. Commun. 7, 505 (2005)

    Article  CAS  Google Scholar 

  47. J.M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki, Angew. Chem. Int. Ed. 44, 7463 (2005)

    Article  CAS  Google Scholar 

  48. J.M. Macak, S.P. Albu, P. Schmuki, Phys. Status Solidi RRL 1, 181 (2007)

    Article  CAS  Google Scholar 

  49. H. Tsuchiya, J.M. Macak, L. Taveira, E. Balaur, A. Ghicov, K. Sirotna, P. Schmuki, Electrochem. Commun. 7, 576–580 (2005)

    Article  CAS  Google Scholar 

  50. N.K. Allam, C.A. Grimes, J. Phys. Chem. C 111, 13028–13032 (2007)

    Article  CAS  Google Scholar 

  51. X. Chen, M. Schriver, T. Suen, S.S. Mao, Thin Solid Films 515, 8511–8514 (2007)

    Article  CAS  Google Scholar 

  52. N.K. Allam, K. Shankar, C.A. Grimes, J. Mater. Chem. 18, 2341–2348 (2008)

    Article  CAS  Google Scholar 

  53. R.G. Kelly, P.J. Moran, J. Kruger, J. Electrochem. Soc. 136, 3262–3269 (1989)

    Article  CAS  Google Scholar 

  54. B. Melody, T. Kinard, P. Lessner, Electrochem. Solid State Lett 1, 126–129 (1998)

    Article  CAS  Google Scholar 

  55. B. Melody, T. Kinard, P. Lessner, Electrochem. Soc. 110, 938–940 (1963)

    Article  Google Scholar 

  56. T.J. Collins, (julio de, 2007) ImageJ for microscopy. BioTechniques 43(1 Suppl), 25–30 . https://doi.org/10.2144/000112517

  57. R.A. Young, The Rietlveld Method. International Union of Crystallography (Oxford Science Publication, Oxford, 1993)

    Google Scholar 

  58. Rodrigez-Carvajal J. Recent developments of the program FullPror Commission on Powder Diffraction, IUCr, Newsletter 26, December (2001)

  59. P. Xiao, H. Fang, G. Cao, Y. Zhang, X. Zhang, Thin Solid Films 518, 7152 (2010)

    Article  CAS  Google Scholar 

  60. Q. Gui, D. Yu, D. Li, Y. Song, X. Zhu, L. Cao, S. Zhang, W. Ma, S. You, Appl. Surf. Sci. 314, 505–509 (2014)

    Article  CAS  Google Scholar 

  61. S. Sreekantan, K.A. Saharudin, Z. Lockman, T.W. Tzu, Nanotechnology. (2010). https://doi.org/10.1088/0957-4484/21/36/365603

  62. N. Liu, K. Lee, P. Schmuki, Electrochem. Commun. 15, 1–4 (2012)

    Article  Google Scholar 

  63. J.M. Macak, P. Schmuki, Electrochim. Acta 52, 1258–1264 (2006)

    Article  CAS  Google Scholar 

  64. von Herrn Dipl.-Ing. Jan Mack.Erlangen, Dissertation 2008

  65. V.P. Parkhutik, V.I. Shershulsky, J. Phys. D 25, 1258 (1992)

    Article  CAS  Google Scholar 

  66. V. Kumar, S.K. Sharma, T.P. Sharma, V. Singh, Opt. Mater. 12, 115–119 (1999)

    Article  CAS  Google Scholar 

  67. K.I. Ishibashi, R.-T. Yamaguchi, Y. Kimura, M. Niwano, J. Electrochem. Soc. 155, K10–K14 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the National University of Colombia in Bogotá, We give thanks professor Jorge Bautista for the laboratory and professor Anderson D. who initially began the idea of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Joya.

Ethics declarations

Conflicting Interest

That we have not signed an agreement with any sponsor of the research reported in the Contribution that prevents you from publishing both positive and negative results or that forbids you from publishing this research without the prior approval of the sponsor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mateus, H.M., Barba-Ortega, J. & Joya, M.R. Comparison of the Growth of \({\text {TiO}}_{2}\) Nanotubes in Different Solutions. J Inorg Organomet Polym 28, 612–623 (2018). https://doi.org/10.1007/s10904-018-0783-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0783-1

Keywords

Navigation