Skip to main content
Log in

Temperature behavior of the free activation energy of viscous flow of glass-forming melts in a wide temperature range

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The Jenckel equation for the temperature dependence of the free activation energy of viscous flow of inorganic glasses has been satisfactorily interpreted within the hole-activation model of viscous flow. “The formation of a fluctuation hole” (deformation of a region of the network) characterizes a preliminary local change in the structure that is necessary for the main elementary act of viscous flow of refractory glass-forming melts, i.e., the switching of bridge valence bonds according to the Muller-Nemilov mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nemilov, S.V., Thermodynamic and Kinetic Aspects of the Vitreous State, Boca Raton: CRC Press, 1995.

    Google Scholar 

  2. Sanditov, D.S. and Bartenev, G.M., Fizicheskie svoistva neuporyadochennykh struktur (Physical Properties of Disordered Structures), Novosibirsk: Nauka, 1982 [in Russian].

    Google Scholar 

  3. Ojovan, M.I., Review Article: Viscosity and Glass Transition in Amorphous Oxides, Adv. Condens. Matter Phys., 2008, article ID 817829 (23 pages).

  4. Glasstone, S., Laidler, K.J., and Eyring, H., The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion, and Electrochemical Phenomena, New York: McGraw-Hill, 1941. Translated under the title Teoriya absolyutnykh skorostei reaktsii, Moscow: Inostrannaya Literatura, 1948.

    Google Scholar 

  5. Nemilov, S.V., Viscous Flow of Glasses in Relation to Their Structure: Application of the Theory of Rate Processes, Sov. J. Glass Phys. Chem., 1992, vol. 18, no. 1, pp. 1–12.

    CAS  Google Scholar 

  6. Nemilov, S.V., The Nature of Viscous Flow of Glasses with a Frozen Structure and Some Corollaries of the Valence-Configurational Theory of Fluidity, Sov. J. Glass Phys. Chem., 1978, vol. 4, no. 2, pp. 129–148.

    CAS  Google Scholar 

  7. Myuller, R.L., The Valence Theory of Viscosity and Fluidity in the Critical Temperature Region for Refractory Glass-Forming Substances, Zh. Prikl. Khim. (Leningrad), 1955, vol. 28, no. 10, pp. 1077–1082.

    CAS  Google Scholar 

  8. Myuller, R.L., Chemical Features of Glass-Forming Polymer Substances and the Nature of Glass Formation, in Stekloobraznoe sostoyanie. Trudy III Vsesoyuznogo soveshchaniya (Proceedings of the Third All-Union Conference on the Vitreous State, Leningrad, Soviet Union, 1959), Leningrad: Academy of Sciences of the Soviet Union, 1959, pp. 61–71.

    Google Scholar 

  9. Doremus, R.H., Melt Viscosities of Silica Glasses, Am. Ceram. Soc. Bull., 2003, vol. 82, no. 3, pp. 59–63.

    CAS  Google Scholar 

  10. Doremus, R.H., Viscosity of Silica, J. Appl. Phys., 2002, vol. 92, no. 12, pp. 7619–7629.

    Article  CAS  Google Scholar 

  11. Ojovan, M.I. and Lee, W.E., Viscosity of Network Liquids within the Doremus Approach, J. Appl. Phys., 2004, vol. 95, no. 7, pp. 3803–3810.

    Article  CAS  Google Scholar 

  12. Ojovan, M.I., Travis, K.P., and Hand, R.J., Thermodynamic Parameters of Bond in Glassy Materials from Viscosity-Temperature Relationships, J. Phys.: Condens. Matter, 2007, vol. 19.

  13. Dure, J.C., Solidity of Viscous Liquids, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2006, vol. 73, p. 021502.

    Article  Google Scholar 

  14. Avramov, I., Viscosity in Disordered Media, J. Non-Cryst. Solids, 2005, vol. 351, nos. 40–42, pp. 3163–3173.

    Article  CAS  Google Scholar 

  15. Pospelov, B.A., The Viscosity of Some Glasses in the Temperature Range of Softening and Annealing: II. The Dependence of the Viscosity of the Glasses on the Temperature, Zh. Fiz. Khim., 1955, vol. 29, no. 1, pp. 70–75.

    CAS  Google Scholar 

  16. Meerlender, G., Die Erweiterte Jenckel-Gleichung Eine Leistungsfahige Viskositate-Temperatur-Formel, Rheol. Acta, 1967, vol. 6, no. 4, pp. 309–377.

    Google Scholar 

  17. Jenckel, E., Zur Temperaturaihangigkeit der Viskosital von Schmelzen, Z. Phys. Chem., 1939, vol. 184, no. 1, pp. 309–319.

    Google Scholar 

  18. Waterton, S.C., The Viscosity-Temperature Relationship and Some Inference on the Nature of Molten and of Plastic Glass, J. Soc. Glass Technol., 1932, vol. 16, pp. 244–253.

    CAS  Google Scholar 

  19. Bredbury, D., Mark, M., and Kleinschmidt, R.V., Viscosity and Density of Lubricating Oils from 0 to 150000 Psig and 32 to 425 F, Trans. ASME, 1951, vol. 73, no. 5, pp. 667–676.

    Google Scholar 

  20. Cornelissen, J., van Leeuwen, J.V., and Watterman, H., La Viscosite des Verres Fondus en Function de la Temperature, Chem. Ind. (London), 1957, vol. 77, no. 1, pp. 69–78.

    CAS  Google Scholar 

  21. Vogel, H., Das Temperaturab-Hangigkeitgesetz der Viskosital von Flussigkeiten, Z. Phys., 1921, vol. 22, pp. 648–651.

    Google Scholar 

  22. Fulcher, G., S. Analysis of Recent Measurements of the Viscosity of Glasses, J. Am. Ceram. Soc., 1925, vol. 8, pp. 789–794.

    Article  CAS  Google Scholar 

  23. Tamman, G., Stekloobraznoe sostoyanie (The Vitreous State), Moscow: ONTI, 1935 [in Russian].

    Google Scholar 

  24. Shishkin, N.I., The Dependence of the Kinetic Properties of Liquids and Glasses on the Temperature, Pressure, and Volume, Zh. Tekh. Fiz., 1956, vol. 26, pp. 1461–1473.

    CAS  Google Scholar 

  25. Evstrop’ev, K.S., On the Viscosity and Electrical Conductivity of Molten Salts and Glasses, Izv. Akad. Nauk SSSR, Ser. Fiz., 1937, no. 3, pp. 359–375.

  26. SciGlass 6.6: Glass Property Information System, Shrewsbury (Massachusetts, United States): Institute of Theoretical Chemistry, 2006.

  27. Ferry, J.D., Viscoelastic Properties of Polymers, New York: Interscience, 1962. Translated under the title Vyazkouprugie svoistva polimerov, Moscow: Inostrannaya Literatura, 1963.

    Google Scholar 

  28. Frenkel, J., Kinetic Theory of Liquids, Oxford: Clarendon, 1941. Translated under the title Kineticheskaya teoriya zhidkostei, Moscow: Academy of Sciences of the Soviet Union, 1945.

    Google Scholar 

  29. Macedo, P.B. and Litovitz, T.A., On the Relative Roles of Free Volume and Activation Energy in the Viscosity of Liquids, J. Chem. Phys., 1965, vol. 42, no. 1, pp. 245–256.

    Article  CAS  Google Scholar 

  30. Doolittle, A.K. and Doolittle, D.B., Studies in Newtonian Flow, J. Appl. Phys., 1957, vol. 28, no. 8, pp. 901–909.

    Article  CAS  Google Scholar 

  31. Hirai, N. and Eyring, H., Bulk Viscosity of Polymeric Systems, J. Polym. Sci., 1959, vol. 37, no. 1, pp. 51–70.

    Article  CAS  Google Scholar 

  32. Kumar, S., Viscosity and Free Volume of Fused Borates and Silicates, Phys. Chem. Glasses, 1963, vol. 4, no. 3, pp. 106–111.

    CAS  Google Scholar 

  33. Sanditov, D.S., On the Theory of Molecular Mobility in Liquids and Glasses over Broad Temperature and Pressure Ranges, Russ. Phys. J., 1971, vol. 14, no. 2, pp. 151–156.

    Google Scholar 

  34. Sanditov, D.S., On the Mechanism of Viscous Flow of Glasses, Fiz. Khim. Stekla, 1976, vol. 2, no. 6, pp. 515–519.

    CAS  Google Scholar 

  35. Sanditov, D.S., Condition of Glass Transition in Liquids and the Lindemann’s Criterion of Melting in the Excited Atom Model, Dokl. Phys. Chem., 2003, vol. 390, nos. 1–3, pp. 122–125.

    Article  CAS  Google Scholar 

  36. Sanditov, D.S., The Excited State Model and an Elementary Act of Softening of Glassy Solids, JETP, 2009, vol. 108, no. 1, pp. 98–110.

    Article  CAS  Google Scholar 

  37. Frenkel’ Ya.I., The Relationship between the Different Theories of Viscosity of Liquids, in Soveshchanie po vyazkosti zhidkostei i kolloidnykh rastvorov (Proceedings of the Conference on the Viscosity of Liquids and Colloidal Solutions), Leningrad: Academy of Sciences of the Soviet Union, 1944, vol. 2, pp. 24–29.

    Google Scholar 

  38. Cohen, M.H. and Turnbull, D., Molecular Transport in Liquids and Glasses, J. Chem. Phys., 1959, vol. 31, no. 5, pp. 1164–1169.

    Article  CAS  Google Scholar 

  39. Nemilov, S.V., Evolution of the Concepts about the Character of Internal Variations in Systems in the Course of the Glass-Liquid Transition, Fiz. Khim. Stekla, 1980, vol. 6, no. 3, pp. 257–268.

    CAS  Google Scholar 

  40. Anderson, O.L. and Bömmel, H.E., Ultrasonic Absorption in Fused Silica at Low Temperatures and High Frequencies, J. Am. Ceram. Soc., 1955, vol. 38, no. 4, pp. 125–131.

    Article  Google Scholar 

  41. Strakna, R.E. and Savage, H.T., Ultrasonic Relaxation Loss in SiO2, GeO2, B2O3, and As2O3 Glasses, J. Appl. Phys., 1964, vol. 35, no. 5, pp. 1445–1450.

    Article  CAS  Google Scholar 

  42. Sanditov, D.S., Thermally Induced Low-Temperature Relaxation of Plastic Deformation in Vitreous Organic Polymers and Silicate Glasses, Polym. Sci., Ser. A, 2007, vol. 49, no. 5, pp. 549–557.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Sanditov.

Additional information

Original Russian Text © D.S. Sanditov, S.B. Munkueva, A.A. Mashanov, B.D. Sanditov, 2012, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanditov, D.S., Munkueva, S.B., Mashanov, A.A. et al. Temperature behavior of the free activation energy of viscous flow of glass-forming melts in a wide temperature range. Glass Phys Chem 38, 379–385 (2012). https://doi.org/10.1134/S1087659612040141

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659612040141

Keywords

Navigation