Skip to main content
Log in

About activation energy of viscous flow of glasses and melts

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Data on a viscous flow model based on network defects–broken bonds termed configurons–were analysed. An universal equation has been derived for the variable activation energy of viscous flow Q(T) of the generic Frenkel equation of viscosity η(T)=A∙exp(Q/RT) which is known to have two constant asymptotes–high QH at low temperatures and low QL at high temperatures. The defect model of flow used by e.g. Doremus, Mott, Nemilov, Sanditov states that higher the concentration of defects (e.g. configurons) the lower the viscosity. We have used the configuron percolation theory (CPT) which treats glass–liquid transition as a percolation-type phase transition. Additionally the CPT results in a continuous temperature relationship for viscosity valid for both glassy and liquid amorphous materials. We show that a particular result of CPT is the universal temperature relationship for the activation energy of viscous flow: Q(T)=QL+RT∙ln[1+exp(-Sd/R) exp((QH-QL)/RT)] which depends on asymptotic energies QL (for the liquid phase) and QH (for the glassy phase), and on entropy of configurons Sd. This equation has two asymptotes, namely Q(T<<Tg) = QH, and Q(T>>Tg) = QL. Moreover we demonstrate that the equation for Q(T) practically coincides in the transition range of temperatures with known Sanditov equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.S. Sanditov. J. Non-Cryst. Solids, 400, 12–20 (2014).

    Article  CAS  Google Scholar 

  2. D.S. Sanditov. J. Non-Cryst. Solids, 385, 148 (2014).

    Article  CAS  Google Scholar 

  3. M.I. Ojovan. J. Non-Cryst. Solids 382, 79 (2013).

    Article  CAS  Google Scholar 

  4. J.F. Stanzione III, K.E. Strawhecker, R.P. Wool. J. Non-Cryst. Solids 357, 311 (2011).

    Article  CAS  Google Scholar 

  5. D. Ma, A.D. Stoica, X.-L. Wang. Nature Materials, 8, 30 (2009).

    Article  CAS  Google Scholar 

  6. D.V. Louzguine-Luzgin, R. Belosludov, A.R. Yavari, K. Georgarakis, G. Vaughan, Y. Kawazoe, T. Egami, A. Inoue. J. Appl. Phys., 110, 043519 (2011).

    Article  Google Scholar 

  7. D.V. Louzguine-Luzgin. Journal of Alloys and Compounds, 586, S2–S8 (2014).

    Article  CAS  Google Scholar 

  8. M.I. Ojovan. Entropy, 10, 334–364 (2008).

    Article  CAS  Google Scholar 

  9. L.-M. Martinez, C.A. Angell. Nature, 410, 663–667 (2001).

    Article  CAS  Google Scholar 

  10. M.I. Ojovan, W.E. Lee. J. Non-Cryst. Solids, 356, 2534 (2010).

    Article  CAS  Google Scholar 

  11. M. Ojovan. Phys. Chem. Glasses, 53, 143 (2012).

    CAS  Google Scholar 

  12. I. Avramov. J. Non-Cryst. Solids 357, 391 (2011).

    Article  CAS  Google Scholar 

  13. A. Fluegel. Glass Technol., 48, 13 (2007).

    CAS  Google Scholar 

  14. M.B. Volf. Mathematical approach to glass. Elsevier, Amsterdam ( 1988).

    Google Scholar 

  15. C.A. Angell. MRS Bulletin, 33, 544 (2008).

    Article  CAS  Google Scholar 

  16. C.A. Angel. J. Phys. Chem. Solids, 49, 863 (1988).

    Article  Google Scholar 

  17. R.H. Doremus. J. Appl. Physics, 92, 7619 (2002).

    Article  CAS  Google Scholar 

  18. G. Möbus, M. Ojovan, S. Cook et.al, J. Nucl. Mater., 396, 264 (2010).

    Article  Google Scholar 

  19. Q. Qin, G.B. McKenna. J. Non-Cryst. Solids 352, 2977 (2006).

    Article  CAS  Google Scholar 

  20. S.V. Nemilov. J. Non-Cryst. Solids 353, 4613 (2007).

    Article  CAS  Google Scholar 

  21. R.W. Douglas. J. Soc. Glass Technology, 33, 138 (1949).

    Google Scholar 

  22. M.I. Ozhovan. J. Exp. Theor. Phys., 103(5) 819–829 (2006).

    Article  CAS  Google Scholar 

  23. M.I. Ojovan, K.P. Travis, R.J. Hand. J. Phys.: Condensed Matter, 19, 415107 (2007).

    Google Scholar 

  24. M.I. Ojovan. Int. J. Applied Glass Science, 5, (1) 22–25 (2014).

    Article  CAS  Google Scholar 

  25. D.S. Sanditov. J. Exp. Theor. Phys., 110(4) 675–688 (2010).

    Article  CAS  Google Scholar 

  26. E.A. Chechetkina. J. Non-Cryst. Solids, 201, 146 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojovan, M.I. About activation energy of viscous flow of glasses and melts. MRS Online Proceedings Library 1757, 7–12 (2014). https://doi.org/10.1557/opl.2015.44

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2015.44

Navigation