Skip to main content
Log in

Radiation resistance of the xenotime YPO4 from the computer simulation data

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The radiation resistance of the mineral xenotime YPO4 has been investigated using computer simulation methods. The optimal criteria for the appropriate choice of the parameters of the interatomic potentials used for the simulation of α-decay in minerals have been proposed. The formation of a cascade of displaced atoms in the structure of xenotime after the passage of a primarily knocked thorium atom with an energy of 20 keV has been studied using the molecular dynamics method. The specific features of the formation and annealing of individual defects in the structure of xenotime have been considered using the Mott-Littleton method. The dependences of the energy of formation of Frenkel pairs and the probability of their annihilation during the annealing of a cascade of atomic displacements on the distance between the vacancy and the interstitial site have been analyzed within the framework of the supercell approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nuclear Power Reactors in the World: Reference Data Series No. 2, Vienna: International Atomic Energy Agency, 2010, p. 77.

  2. Ewing, R.C., Lutze, W., and Weber, W.J., Zircon: A Host Phase for the Disposal of Weapons Plutonium, J. Mater. Res., 1995, vol. 10, no. 2, pp. 243–246.

    Article  CAS  Google Scholar 

  3. Chakoumakos, B.C., Murakami, T., Lumpkin, G.R., and Ewing, R.C., Alpha-Decay Induced Fracturing in Zircon: The Transition from the Crystalline to the Metamict State, Science (Washington), 1987, vol. 236, no. 4808, pp. 1556–1559.

    Article  CAS  Google Scholar 

  4. Murakami, T., Chakoumakos, B.C., Ewing, R.C., Lumpkin, G.R., and Weber, W.J., Alpha-Decay Event Damage in Zircon, Am. Mineral., 1991, vol. 76, nos. 9–10, pp. 1510–1532.

    CAS  Google Scholar 

  5. Weber, W.J., Ewing, R.C., and Wang, L.M., The Radiation-Induced Crystalline-to-Amorphous Transition in Zircon, J. Mater. Res., 1994, vol. 9, no. 3, pp. 688–698.

    Article  CAS  Google Scholar 

  6. Shpak, A.P., Grechanovsky, A.E., Lytovchenko, A.S., Legkova, G.V., and Sayenko, S.Yu., Influence of Temperature and Uranium on the Radiation Stability of Zircon, J. Nucl. Mater., 2005, vol. 347, nos. 1–2, pp. 73–76.

    Article  CAS  Google Scholar 

  7. Robinson, M.T., Basic Physics of Radiation Damage Production, J. Nucl. Mater., 1994, vol. 216, no. 1, pp. 1–28.

    Article  CAS  Google Scholar 

  8. Meldrum, A., Boatner, L.A., Zinkle, S.J., Wang, S.-X., Wang, L.-M., and Ewing, R.C., Effects of Dose Rate and Temperature on the Crystalline-to-Metamict Transformation in the ABO4 Orthosilicates, Can. Mineral., 1999, vol. 37, no. 1, pp. 207–221.

    CAS  Google Scholar 

  9. Meldrum, A., Boatner, L.A., and Ewing, R.C., Displacive Radiation Effects in the Monazite- and Zircon-Structure Orthophosphates, Phys. Rev. B: Condens. Matter, 1997, vol. 56, no. 21, pp. 13805–13814.

    Article  CAS  Google Scholar 

  10. Meldrum, A., Zinkle, S.J., Boatner, L.A., and Ewing, R.C., Heavy-Ion Irradiation Effects in the ABO4 Orthosilicates: Decomposition, Amorphization, and Recrystallization, Phys. Rev. B: Condens. Matter, 1999, vol. 59, no. 6, pp. 3981–3992.

    Article  CAS  Google Scholar 

  11. Trachenko, K., Dove, M.T., Geisler, T., Todorov, I., and Smith, B., Radiation Damage Effects and Percolation Theory, J. Phys.: Condens. Matter, 2004, vol. 16, no. 27, pp. 2623–2627.

    Article  Google Scholar 

  12. Trachenko, K.O., Dove, M.T., and Salje, E.K.H., Atomistic Modelling of Radiation Damage in Zircon, J. Phys.: Condens. Matter, 2001, vol. 13, no. 9, pp. 1947–1959.

    Article  CAS  Google Scholar 

  13. Devanathan, R., Corrales, L.R., Weber, W.J., Chartier, A., and Meis, C., Molecular Dynamics Simulation of Defect Production in Collision Cascades in Zircon, Nucl. Instrum. Methods Phys. Res., Sect. B, 2005, vol. 228, nos. 1–4, pp. 299–303.

    Article  CAS  Google Scholar 

  14. Crocombette, J.-P. and Ghaleb, D., Molecular Dynamics Modeling of Irradiation Damage in Pure and Uranium-Doped Zircon, J. Nucl. Mater., 2001, vol. 295, nos. 2–3, pp. 167–178.

    Article  CAS  Google Scholar 

  15. Rabone, J.A.L. and de Leeuw, N.H., Interatomic Potential Models for Natural Apatite Crystals: Incorporating Strontium and the Lanthanides, J. Comput. Chem., 2006, vol. 27, no. 2, pp. 253–266.

    Article  CAS  Google Scholar 

  16. Ni, Y., Hughes, J.M., and Mariano, A.N., Crystal Chemistry of the Monazite and Xenotime Structures, Am. Mineral., 1995, vol. 80, nos. 1–2, pp. 21–26.

    CAS  Google Scholar 

  17. Mogilevsky, P., Zaretsky, E.B., Parthasarathy, T.A., and Meisenkothen, F., Composition, Lattice Parameters, and Room Temperature Elastic Constants of Natural Single-Crystal Xenotime from Novo Horizonte, Phys. Chem. Miner., 2006, vol. 33, no. 10, pp. 691–698.

    Article  CAS  Google Scholar 

  18. Gavrichev, K.S., Ryumin, M.A., Tyurin, A.V., Gurevich, V.M., and Komissarova, L.N., Heat Capacity and Thermodynamic Functions of Xenotime YPO4(x) in the Temperature Range 0–1600 K, Geochem. Int., 2010, no. 9, pp. 932–939.

  19. Kramer, G.J., Farragher, N.P., van Beest, B.W.H., and van Santen, R.A., Interatomic Force Fields for Silicas, Aluminophosphates, and Zeolites: Derivation Based on Ab Initio Calculations, Phys. Rev. B: Condens. Matter, 1991, vol. 43, no. 6, pp. 5068–5080.

    Article  CAS  Google Scholar 

  20. Trachenko, K., Pruneda, J.M., Artacho, E., and Dove, M.T., How the Nature of the Chemical Bond Governs Resistance to Amorphization by Radiation Damage, Phys. Rev. B: Condens. Matter, 2005, vol. 71, no. 18, p. 184104.

    Article  Google Scholar 

  21. Todorov, I.T. and Smith, W., DL-POLY-3: The CCP5 National UK Code for Molecular-Dynamics Simulations, Philos. Trans. R. Soc. London, Ser. A, 2004, vol. 362, pp. 1835–1852.

    Article  CAS  Google Scholar 

  22. Mott, N.F. and Littleton, M.J., Conduction in Polar Crystals: I. Electrolytic Conduction in Solid Salts, Trans. Faraday Soc., 1938, vol. 34, pp. 485–495.

    Article  CAS  Google Scholar 

  23. Eremin, N.N., Deyanov, R.Z., and Urusov, V.S., Choice of the Supercell with the Optimum Atomic Configuration in Simulation of Disordered Solid Solutions, Glass Phys. Chem., 2008, vol. 34, no. 1, pp. 9–18.

    Article  CAS  Google Scholar 

  24. Catlow, C.R.A., James, R., Mackrodt, W.C., and Stewart, R.F., Defect Energetics in α-Al2O3 and Rutile TiO2, Phys. Rev. B: Condens. Matter, 1982, vol. 25, no. 2, pp. 1006–1026.

    Article  CAS  Google Scholar 

  25. Gale, J.D. and Rohl, A.L., The General Utility Lattice Program (GULP), Mol. Simul., 2003, vol. 29, no. 5, pp. 291–341.

    Article  CAS  Google Scholar 

  26. Cho, I.-S., Choi, G.K., An, J.-S., Kim, J.-R., and Hong, K.S., Sintering, Microstructure, and Microwave Dielectric Properties of Rare-Earth Orthophosphates, RePO4 (Re = La, Ce, Nd, Sm, Tb, Dy, Y, Yb), Mater. Res. Bull., 2009, vol. 44, pp. 173–178.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Urusov.

Additional information

Original Russian Text © V.S. Urusov, A.E. Grechanovsky, N.N. Eremin, 2012, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urusov, V.S., Grechanovsky, A.E. & Eremin, N.N. Radiation resistance of the xenotime YPO4 from the computer simulation data. Glass Phys Chem 38, 55–62 (2012). https://doi.org/10.1134/S1087659612010178

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659612010178

Keywords

Navigation