Skip to main content
Log in

Structural chemistry of the nanoworld—A new page of inorganic chemistry

  • Proceedings of the First All-Russian Conference “Sol-Gel Synthesis and Study of Inorganic Compounds, Hybrid Functional Materials, and Disperse Systems” (St. Petersburg, Russia, November 22–24, 2010)
  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Trace everything back to the beginning and you will understand a lot.

K. Prutkov

Abstract

A review of the current state-of-the-art in the science of the structure of matter in a nanometer-scale size is presented. The notion of the “nanoworld” has been introduced, and the decisive role of the nanoworld in the formation of chemical matter has been shown. The effectiveness of the mathematical apparatus and the possibility of coding the processes of formation and development, as well as the past evolution (for viruses taken as an example), have been analyzed for a great number of real (primarily, inorganic) substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prigogine, I., Introduction to Thermodynamics of Irreversible Processes, New York: Wiley, 1968. Translated under the title Vvedenie v Termodinamiku Neobratimykh Protsessov, Izhevsk: Regular and Chaotic Dynamics, 2001.

    Google Scholar 

  2. Kadomtsev, B.B., Dinamika i informatsiya (Dynamics and Information), Moscow: Editorial Board Physics-Uspekhi, 1999.

    Google Scholar 

  3. Shevchenko, V.Ya. and Bal’makov, M.D., Centaur Nanoparticles as Objects of the Nanoworld, Glass Phys. Chem., 2002, vol. 28, no. 6, pp. 441–444.

    Article  CAS  Google Scholar 

  4. Andersson, S.S., On the Description of Complex Inorganic Crystal Structures, Angew. Chem., 1983, vol. 22, no. 2, pp. 69–81.

    Article  Google Scholar 

  5. Hildebrandt, S. and Tromba, A., Mathematics and Optimal Form, San Francisco, California, United States: Freeman, 1985, p. 215.

    Google Scholar 

  6. Lawes, F., Factors that Determine the Crystal Structure, in Intermetallic Compounds, Westbrook, J.H., Ed., New York: Wiley, 1967. Translated under the title Intermetallicheskie soedineniya, Moscow: Metallurgiya, 1978, pp. 139–161.

    Google Scholar 

  7. Pearson, W.B., The Crystal Chemistry and Physics of Metals and Alloys, New York: Wiley, 1972, part 1. Translated under the title Kristallokhimiya i fizika metallov i splavov, Moscow: Mir, 1977.

    Google Scholar 

  8. Mackay, A.L. and Klinowski, J., Towards a Grammar of Inorganic Structure, Comput. Math. Appl., 1986, vol. 2, nos. 3/4, pp. 803–824.

    Article  Google Scholar 

  9. Bernal, J.D. and Carlisle, S.H., The Range of Generalized Crystallography, Sov. Phys. Crystallogr., 1969, vol. 13, no. 5, pp. 811–831.

    Google Scholar 

  10. Conway, J.H. and Sloane, N.Ya., Sphere Packing, Lattices, and Groups, Berlin: Springer, 1998.

    Google Scholar 

  11. Riemann, B., Collected Papers, Heber City (Utah, United States): Kendrick, 1882. Translated under the title Sochineniya, Moscow: OGIZ, 1948.

    Google Scholar 

  12. Sloane, N.J.A., The Packing of Spheres, Sci. Am., 1984, vol. 250, pp. 116–125.

    Article  Google Scholar 

  13. Lord, E.A., Mackay, A.L., and Ranganathan, S., New Geometries for New Materials, Cambridge: Cambridge University Press, 2006. Translated under the title Novaya geometriya dlya novykh materialov, Moscow: Fizmatlit, 2010.

    Google Scholar 

  14. Vainshtein, B.K., Sovremennaya Kristallografiya, Moscow: Nauka, 1979 (Modern Crystallography, Berlin: Springer, 1994), vol. 1.

    Google Scholar 

  15. Fortov, V.E., Extreme States of Matter on Earth and in Space, Phys.-Usp. 2009, vol. 52, no. 6, pp. 615–647.

    Article  CAS  Google Scholar 

  16. Cohn, H. and Kumar, A., Universally Optimal Distribution of Points on Spheres, J. Am. Math. Soc., 2007, vol. 20, pp. 99–148.

    Article  Google Scholar 

  17. Frank, F.C. and Kasper, J.S., Alloy Structures Regarded as Spheres Packings, Acta Crystallogr., 1958, vol. 11, pp. 184–190.

    Article  CAS  Google Scholar 

  18. Kepler, J., The Six Sided Snowflake (1611), London: Oxford University Press, 1966.

    Google Scholar 

  19. Mackay, A.L., Quasicrystals Turn to the Sixth-Dimension, Nature, 1990, vol. 344, p. 21.

    Article  CAS  Google Scholar 

  20. Kuo, K.H., Ant-Mackay, Double-Mackay, Pseudo-Mackay, and Related Icosahedral Shell Clusters, Struc. Chem., 2002, vol. 13, nos. 3/4, pp. 221–230.

    Article  CAS  Google Scholar 

  21. Janot, C., Atomic Clusters, Local Isomorphism and Recurrently Localized States in Quasicrystals, J. Phys.: Condens. Matter, 1997, vol. 9, no. 7, pp. 1493–1508.

    Article  CAS  Google Scholar 

  22. Lord, E.A., Ranganathan, S., and Kulkarni, U.D., Tilings, Covering, Clusters and Quasicrystals, Curr. Sci., 2000, vol. 78, no. 1, pp. 64–72.

    Google Scholar 

  23. Poinsot, L., Memoire sur les polygons et polydres, J. Ec. Polytech. (Paris), 1810, vol. 9, pp. 16–48.

    Google Scholar 

  24. Coxeter, H.S.M., Regular Polytopes, New York: Macmillan, 1963; 3rd. ed., New York: Dover, 1973.

    Google Scholar 

  25. Shevchenko, V.Ya., Krivovichev, S.V., and Mackay, A.L., Cellular Automata and Order in the Structural Chemistry of the Lovozerite Group Minerals, J. Glass Phys. Chem., 2010, vol. 36, no. 1, pp. 3–13.

    Google Scholar 

  26. Shevchenko, V.Ya. and Tereschenko, G.F., Research, Development, and Innovations in the Field of Ceramic and Glass Materials, Herald Russ. Acad. Sci., 2000, vol. 70, no. 1, pp. 82–87.

    Google Scholar 

  27. De Gennes, P.-G., Soft Matter, Rev. Mod. Phys., 1992, vol. 64, no. 3, pp. 645–648.

    Article  Google Scholar 

  28. Shevchenko, V.Ya., Madison, A.E., and Glushkova, V.B., Structure of Nanosized Zirconia Centaur Particles, Glass Phys. Chem., 2001, vol. 27, no. 4, pp. 400–405.

    Article  CAS  Google Scholar 

  29. Andersson, S.S., Description of Virus Capsid Structures with Methods from Inorganic Solid State Chemistry, Z. Anorg. Allg. Chem., 2008, vol. 634, no. 14, pp. 2504–2510.

    Article  CAS  Google Scholar 

  30. Andersson, S.S., The Structure of Virus Capsid, Z. Anorg. Allg. Chem., 2008, vol. 634, pp. 2161–2170.

    Article  CAS  Google Scholar 

  31. Andersson, S.S., Virus Structures, Stellations, Spikes and Rods, Z. Anorg. Allg. Chem., 2009, vol. 635, pp. 725–731.

    Article  CAS  Google Scholar 

  32. Andersson, S.S., Virus Evolution and Fundamental Structure, Löttorp, Sweden: Sandforsk, Institute of Sandvik, 2008.

    Google Scholar 

  33. Andersson, S.S., Virus Evolution and the Beginning, Z. Anorg. Allg. Chem., 2009, vol. 635, pp. 717–724.

    Article  CAS  Google Scholar 

  34. Shechtman, D., Blech, I., Gratias, D., and Cahn, J., Metallic Phase with Long-Ranged Orientational Order and no Translational Symmetry, Phys. Rev. Lett., 1984, vol. 53, pp. 1951–1953.

    Article  CAS  Google Scholar 

  35. Andersson, S.S., Lidin, S., Jacob, M., and Terasaki, O., On the Quasicrystalline State, Angew. Chem., Int. Ed. Engl., 1991, vol. 30, no. 7, pp. 754–758.

    Article  Google Scholar 

  36. Lehn, J.-M., Supramolecular Chemistry: Concepts and Perspectives, Weinheim: Wiley, 1995.

    Book  Google Scholar 

  37. Lehn, J.-M., From Supramolecular Chemistry Towards Constitutional Dynamic Chemistry and Adaptive Chemistry, Chem. Soc. Rev., 2007, vol. 36, pp. 151–160.

    Article  CAS  Google Scholar 

  38. Naivz, O., Arndt, M., and Zeilinger, A., Quantum Interference Experiments with Large Molecules, Am. J. Phys., 2003, vol. 7, no. 4, pp. 319–325.

    Google Scholar 

  39. Shevchenko, V.Ya., Madison, A.E., and Shudegov, V.E., The Structural Diversity of the Nanoworld, Glass Phys. Chem, 2003, vol. 29, no. 6, pp. 577–582.

    Article  CAS  Google Scholar 

  40. Shevchenko, V.Ya., Samoilovich, M.I., Talis, A.L., Madison, A.E., and Shudegov, V.E., Geometrical Structural Complexes of ZrO2 Nanoparticles, Glass Phys. Chem., 2005, vol. 31, no. 2, pp. 187–200.

    Article  CAS  Google Scholar 

  41. Shevchenko, V.Ya., Samoilovich, M.I., Talis, A.L., and Madison, A.E., Nanostructures with Coherent Boundaries and the Local Approach, Glass Phys. Chem., 2004, vol. 30, no. 6, pp. 537–551.

    Article  CAS  Google Scholar 

  42. Shevchenko, V.Ya., Madison, A.E., and Shudegov, V.E., Fragmentariness and Metamorphoses of Nanostructures, Glass Phys. Chem., 2003, vol. 29, no. 6, pp. 583–589.

    Article  CAS  Google Scholar 

  43. Shevchenko, V.Ya., Samoilovich, M.I., Talis, A.L., and Madison, A.E., Theory of the Structure of Coherent Boundaries in ZrO2 Nanoparticles, Glass Phys. Chem., 2005, vol. 31, no. 4, pp. 407–419.

    Article  CAS  Google Scholar 

  44. Shevchenko, V.Ya., Samoilovich, M.I., Talis, A.L., and Madison, A.E., On the Structure of a Pd561 Giant Palladium Cluster, Glass Phys. Chem., 2005, vol. 31, no. 2, pp. 350–355.

    Google Scholar 

  45. Shevchenko, V.Ya., Samoilovich, M.I., Talis, A.L., and Madison, A.E., On the Structure of Icosahedral Keplerates and Their Derivatives, Glass Phys. Chem., 2005, vol. 31, no. 3, pp. 402–406.

    Article  CAS  Google Scholar 

  46. Shevchenko, V.Ya. and Madison, A.E., Icosahedral Diamond, Glass Phys. Chem., 2006, vol. 32, no. 1, pp. 118–121.

    Article  CAS  Google Scholar 

  47. Shevchenko, V.Ya. and Madison, A.E., Generalized Model for the Shell Structure of Icosahedral Viruses, J. Struc. Chem., 2007, vol. 18, no. 3, pp. 343–346.

    Article  CAS  Google Scholar 

  48. Shevchenko, V.Ya. and Mackay, A.L., Geometrical Principles for the Self-Assembly of Nanoparticles, J. Struc. Chem., 2008, vol. 34, no. 1, pp. 3–10.

    Google Scholar 

  49. Shevchenko, V.Ya., Krivovichev, S.V., and Mackay, A.L., Where are Gene in Paulingite? Mathematical Principle of Formation of Inorganic Materials on the Atomic Level, J. Struc. Chem., 2008, vol. 19, pp. 571–577.

    Article  CAS  Google Scholar 

  50. Shevchenko, V.Ya., Blatov, V.A., and Ilushin, G.D., Intermetallic Compounds of the NaCd2 Family Perceived as Assemblies of Nanoclusters, J. Struc. Chem., 2009, vol. 20, pp. 975–982.

    Article  CAS  Google Scholar 

  51. Shevchenko, V.Ya., Blatov, V.A., and Ilushin, G.D., Structural Chemistry of Metal Microclusters: Questions and Answers, Glass Phys. Chem., 2009, vol. 35, no. 1, pp. 1–12.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Shevchenko.

Additional information

Original Russian Text © V.Ya. Shevchenko, 2011, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shevchenko, V.Y. Structural chemistry of the nanoworld—A new page of inorganic chemistry. Glass Phys Chem 37, 467–484 (2011). https://doi.org/10.1134/S1087659611050129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659611050129

Keywords

Navigation