Skip to main content
Log in

Nanostructures with coherent boundaries and the local approach

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Nanostructures with coherent boundaries are considered in the framework of the local approach. It is demonstrated that the use of the fiber space formalism makes it possible to derive a set of geometrical structural complexes that are building blocks of nanostructures. These complexes are determined by the specific sub-configurations of finite projective planes. It is shown that, in the case of fourfold-coordinated structures, crystalline and quasicrystalline fragments can intergrow coherently (without dangling bonds).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V.Ya. Shevchenko A.E. Madison V.E. Shudegov (2003) ArticleTitleThe Structural Diversity of the Nanoworld Fiz. Khim. Stekla 29 IssueID6 801–808

    Google Scholar 

  2. V.Ya. Shevchenko A.E. Madison V.E. Shudegov (2003) ArticleTitleFragmentariness and Metamorphoses of Nanostructures Fiz. Khim. Stekla 29 IssueID6 809–816

    Google Scholar 

  3. A.V. Burkhanov A.G. Ermolaev V.N. Lapovok V. F. Petrunin L.I. Trusov (1989) ArticleTitlePseudomorphism and Structural Relaxation in Small-Sized Particles Poverkhnost 7 51–58

    Google Scholar 

  4. B. Palosz S. Stel’makh E. Grzanka S. Gierlotka R. Pielaszek U. Bismayer S. Werner W. Palosz (2004) ArticleTitleHigh Pressure X-ray Diffraction Studies on Nanocrystalline Materials J. Phys.: Condens. Matter 16 IssueID5 S353–S377 Occurrence Handle1:CAS:528:DC%2BD2cXhvVCrs7s%3D

    CAS  Google Scholar 

  5. V.Ya. Shevchenko O.L. Khasanov G.S. Yur’ev Yu.F. Ivanov (2001) ArticleTitleCoexistence of Cubic and Tetragonal Structures in an Yttria-Stabilized Zirconia Nanoparticle Neorg. Mater. 37 IssueID9 1117–1119

    Google Scholar 

  6. V.Ya. Shevchenko A.E. Madison V.B. Glushkova (2001) ArticleTitleStructure of Nanosized Zirconia Centaur Particles Fiz. Khim. Stekla 27 IssueID3 419–428

    Google Scholar 

  7. V.Ya. Shevchenko O.L. Khasanov A.E. Madison J.Y. Lee (2002) ArticleTitleInvestigation of the Structure of Zirconia Nanoparticles by High-Resolution Transmission Electron Microscopy Fiz. Khim. Stekla 28 IssueID5 459–464

    Google Scholar 

  8. A. Singh A.P. Tsai (2003) ArticleTitleOn the Cubic W Phase and Its Relationship to the Icosahedral Phase in Mg-Zn-Y Alloys Scr. Mater. 49 IssueID2 143–148 Occurrence Handle1:CAS:528:DC%2BD3sXjsFOlsLw%3D

    CAS  Google Scholar 

  9. L.A. Bendersky F.W. Gayle (2001) ArticleTitleElectron Diffraction Using Transmission Electron Microscopy J. Res. Natl. Inst. Stand. Technol. 106 IssueID6 997–1012 Occurrence Handle1:CAS:528:DC%2BD38XktlGqt7k%3D

    CAS  Google Scholar 

  10. L.A. Bendersky J.W. Cahn D. Gratias (1989) ArticleTitleA Crystalline Aggregate with Icosahedral Symmetry, and Its Implication for the Crystallography of Twinning and Grain Boundaries Philos. Mag. B 60 837–845 Occurrence Handle1:CAS:528:DyaK3cXht12msrs%3D

    CAS  Google Scholar 

  11. H. Terrones A.L. Mackay (1992) ArticleTitleThe Geometry of Hypothetical Curved Graphite Structures Carbon 30 IssueID8 1251–1260 Occurrence Handle1:CAS:528:DyaK3sXhtlamsb0%3D

    CAS  Google Scholar 

  12. S.T. Hyde S. Ramsden T. Di Matteo J.J. Longdell (2003) ArticleTitle Ab Initio Construction of Some Crystalline 3D Euclidean Networks Solid State Sci. 5 IssueID1 35–45 Occurrence Handle10.1016/S1293-2558(02)00079-1 Occurrence Handle1:CAS:528:DC%2BD3sXisFWgsLs%3D

    Article  CAS  Google Scholar 

  13. R.L. Withers (2003) ArticleTitleAn Analytical Solution for the Zero Frequency Hyperbolic RUM Mode of Distortion of SiO2-Tridymite Solid State Sci. 5 IssueID1 115–123 Occurrence Handle1:CAS:528:DC%2BD3sXisFWgsbg%3D

    CAS  Google Scholar 

  14. S. Andersson (1983) ArticleTitleOn the Description of Complex Inorganic Crystal Structures Angew. Chem. Int. Ed. Engl. 22 69–81

    Google Scholar 

  15. S. Andersson A.D. Wadsley (1966) ArticleTitleCrystallographic Shear and Diffusion Paths in Certain Higher Oxides of Niobium, Tungsten, Molybdenum, and Titanium Nature 211 581 Occurrence Handle1:CAS:528:DyaF28Xks1Sqsr8%3D

    CAS  Google Scholar 

  16. G. Férey C. Mellot-Draznieks T. Loiseau (2003) ArticleTitleReal, Virtual, and not Yet Discovered Porous Structures Using Scale Chemistry and/or Simulation: A Tribute to Sten Andersson Solid State Sci. 5 IssueID1 79–94

    Google Scholar 

  17. H. Terrones M. Terrones J.L. Morán-López (2001) ArticleTitleCurved Nanomaterials Curr. Sci. 81 IssueID8 1011–1029 Occurrence Handle1:CAS:528:DC%2BD3MXoslanu74%3D

    CAS  Google Scholar 

  18. B.L. Dubrovin S.P. Novikov A.T. Fomenko (2001) Sovremennaya geometriya Editorial URSS Moscow

    Google Scholar 

  19. M. Daniel S.M. Vialle (1982) ArticleTitleGeometrical Approach to Gauge Theories of the Yang-Mills Type Usp. Fiz. Nauk 136 IssueID3 378–421

    Google Scholar 

  20. N.S. Manton (1987) ArticleTitleConnections on Discrete Fibre Bundles Commun. Math. Phys. 113 341–351

    Google Scholar 

  21. A.L. Talis (2000) Construction of Generalized Crystallography of Diamond-Like Structures on the Basis of Algebraic Geometry: Part II Sintez mineralov VNIISIMS Aleksandrov 321–405

    Google Scholar 

  22. A.L. Talis (2002) ArticleTitleGeneralized Crystallography of Diamond-Like Structures: I. Finite Projective Planes and Specific Clusters of Diamond-Like Structures Determined by These Planes Kristallografiya 47 IssueID4 583–593

    Google Scholar 

  23. A.L. Talis (2002) ArticleTitleGeneralized Crystallography of Diamond-Like Structures: II. Diamond Packing in the Space of a Three-Dimensional Sphere, Subconfiguration of Finite Projective Planes, and Generating Clusters of Diamond-Like Structures Kristallografiya 47 IssueID5 775–784

    Google Scholar 

  24. M.I. Samoilovich A.L. Talis (2003) Topological Features of Construction of a Diamond-Like Quasicrystal with Infinite Point Group Sbornik dokladov “Almaznye plenki i plenki rodstvennykh materialov” NNTs KhFTI, “Konstanata,” Kharkov 133–146

    Google Scholar 

  25. M.I. Samoilovich A.L. Talis M.I. Mironov (2002) ArticleTitleInfinite Point Group Quasicrystals: Symmetry Basis for Noncrystalline Diamond-Like Materials Neorg. Mater. 38 IssueID4 443–448 Occurrence Handle10.1023/A:1015153805421

    Article  Google Scholar 

  26. M. Escher (2000) NoChapterTitle J.L. Locher (Eds) The Complete Graphic Work Thames and Hudson London

    Google Scholar 

  27. D. Levine P.J. Steinhardt (1986) ArticleTitleQuasicrystals: I. Definition and Structure Phys. Rev. B: Condens. Matter 34 IssueID2 596–616 Occurrence Handle1:CAS:528:DyaL28XltVGqtrw%3D

    CAS  Google Scholar 

  28. D.J. Chadi (1985) ArticleTitleNew Crystalline Structures for Si and Ge Phys. Rev. B: Condens. Matter 32 6485–6489 Occurrence Handle1:CAS:528:DyaL28Xhtlagtg%3D%3D

    CAS  Google Scholar 

  29. H.S.M. Coxeter W.O.J. Moser (1972) Generators and Relations for Discrete Groups Springer-Verlag Berlin

    Google Scholar 

  30. H.S.M. Coxeter (1950) ArticleTitleSelf-Dual Configurations and Regular Graphs Bull. Am. Math. Soc. 56 413–455 Occurrence Handle10.1090/S0002-9904-1950-09407-5

    Article  Google Scholar 

  31. A.L. Talis (2003) ArticleTitleCharacteristics of Gas Hydrates and Constructions Determined by the Eight-Dimensional Lattice E 8 Dokl. Akad. Nauk 390 IssueID2 172–177

    Google Scholar 

  32. F. Liebau (1988) Structural Chemistry of Silicates Springer-Verlag Berlin

    Google Scholar 

  33. J. Peters H.-R. Treben (1991) ArticleTitleTetracoordinated Quasicrystals Phys. Rev. B: Condens. Matter 43 IssueID2 1820–1823

    Google Scholar 

  34. J. Honstra (1966) Dislocations in Diamond Lattice Defects in Semiconductor Crystals Wiley New York

    Google Scholar 

  35. D.E. Polk (1971) ArticleTitleStructural Model for Amorphous Silicon and Germanium J. Non-Cryst. Solids 5 365–376 Occurrence Handle1:CAS:528:DyaE3MXpt1aitQ%3D%3D

    CAS  Google Scholar 

  36. A. Müller S. Roy (2002) ArticleTitleNanoobjects Based on Metal Oxides: Reactivity, Building Blocks for Polymeric Structures, and Structural Variety Usp. Khim. 71 IssueID12 1109–1118

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text Copyright © 2004 by Fizika i Khimiya Stekla, Shevchenko, Samoilovich, Talis, Madison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shevchenko, V.Y., Samoilovich, M.I., Talis, A.L. et al. Nanostructures with coherent boundaries and the local approach. Glass Phys Chem 30, 537–550 (2004). https://doi.org/10.1007/s10720-005-0011-2

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10720-005-0011-2

Keywords

Navigation