Skip to main content
Log in

Analysis of disproportionation of Q n structons in the simulation of the structure of melts in the Na2O-SiO2 system

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

A new version of the STRUCTON-1.2 computer program (2009) has been presented. The program combines the algorithm for calculating real distributions of Q n structons in binary silicate melts (with allowance made for their disproportionation) and the statistical simulation of molecular-mass distributions of polymerized ions at different temperatures. This model has been used to perform test calculations for two melts in the Na2O-SiO2 system (Na6Si2O7, Na6Si3O9). The results of the calculations have made it possible to trace variations in the set and concentrations of chain and ring silicon-oxygen complexes with a decrease in the temperature in the order: stochastic molecular-mass → distribution molecular-mass distribution at T = 2000 K → molecular-mass distribution at the liquidus temperature. The main result of these calculations is that the dominant species of silicon-oxygen anions at the liquidus temperatures (in contrast to the stochastic distributions) exactly correspond to the stoichiometry of the initial melts: the Si2O 6−7 chain anions and (Si n O3n )3n ring complexes are dominant in the Na6Si2O7 and Na6Si3O9 melts, respectively. It has been established that, with a decrease in the temperature, the average size of polymer complexes varies weakly in the Na6Si2O7 melt but increases by a factor of approximately 1.5 in the metasilicate system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lentz, C.W., Silicate Minerals as Sources of Trimethylsilyl Silicates and Silicate Structure Analysis of Sodium Silicate Solutions, Inorg. Chem., 1964, vol. 3, pp. 574–579.

    Article  CAS  Google Scholar 

  2. Kolb, K.E. and Hansen, K.W., Silica Structure in Borate Glasses, J. Am. Ceram. Soc., 1965, vol. 48, p. 439.

    Article  Google Scholar 

  3. Gotz, J., Masson, C.R., and Castelliz, L.M., Crystallization of Lead Silicate Glass as Studied by Trimethylsilylation and Chromatographic Separation of the Anionic Constituents, in Amorphous Materials, Douglas, R.W. and Ellis, B., Eds., New York: Wiley, 1972, pp. 317–325.

    Google Scholar 

  4. Dalby, K.N. and King, P.L., A New Approach to Determine and Quantify Structural Units in Silicate Glasses Using Micro-Reflectance Fourier-Transformed Infrared Spectroscopy, Am. Mineral., 2006, vol. 91, pp. 1783–1793.

    Article  CAS  Google Scholar 

  5. Masson, C.R., Ionic Equilibria in Liquid Silicates, J. Am. Ceram. Soc., 1968, vol. 51, pp. 134–143.

    Article  Google Scholar 

  6. Esin, O.A., Polymer Model of Molten Silicates, in Itogi nauki i tekhniki: Rastvory. Rasplavy (Advances in Science and Technology: Solutions and Melts), Moscow: VINITI, 1975, vol. 2, pp. 76–107 [in Russian].

    Google Scholar 

  7. Fraser, D.G., Thermodynamic Properties of Silicate Melts, in Thermodynamics in Geology, Fraser, D.G., Ed., Dordrecht, Holland: D. Reidel, 1977, pp. 301–325.

    Google Scholar 

  8. Hess, P.C., Structure of Silicate Melts, Can. Mineral., 1977, vol. 15, pp. 162–178.

    Google Scholar 

  9. Masson, C.R., Anionic Composition of Glass-Forming Melts, J. Non-Cryst. Solids, 1977, vol. 25, pp. 3–41.

    Article  ADS  Google Scholar 

  10. Lacy, E.D., A Statistical Model of Polymerization/Depolymerization Relationships in Silicate Melts and Glasses, Phys. Chem. Glasses, 1965, vol. 6, pp. 171–180.

    CAS  Google Scholar 

  11. Falk, M. and Thomas, R.E., Molecular Size Distribution in Random Polyfunctional Condensation with or without Ring Formation: Computer Simulation, Can. J. Chem., 1974, vol. 52, pp. 3285–3295.

    Article  CAS  Google Scholar 

  12. Machacek, J., Gedeon, O., and Liska, M., Group Connectivity in Binary Silicate Glasses, J. Non-Cryst. Solids, 2006, vol. 352, pp. 2173–2179.

    Article  CAS  ADS  Google Scholar 

  13. Sen, S. and Tangeman, J., Evidence for Anomalously Large Degree of Polymerization in Mg2SiO4 Glass and Melt, Am. Mineral., 2008, vol. 93, pp. 946–949.

    Article  CAS  Google Scholar 

  14. Pretnar, V.B., Beitrag zur Ionentheorie der Silikatmelzen, Ber. Bunsen Ges. Phys. Chem., 1968, vol. 72, pp. 773–778.

    CAS  Google Scholar 

  15. Baes, C.F., Jr., A Polymer Model for BeF2 and SiO2 Melts, J. Solid State Chem., 1970, vol. 1, pp. 159–170.

    Article  CAS  ADS  Google Scholar 

  16. Masson, C.R., Smith, I.B., and Whiteway, S.G., Activities and Ionic Distributions in Liquid Silicates: Application of Polymer Theory, Can. J. Chem., 1970, vol. 48, pp. 1456–1464.

    Article  CAS  Google Scholar 

  17. Esin, O.A., Comparison of Methods for Evaluating the Degree of Polymerization of Silicate Melts, in Fizicheskaya khimiya metallurgicheskikh rasplavov (Physical Chemistry of Metallurgical Melts), Trudy Inst. Metall., 1972, issue 27, part IV, pp. 27–44 [in Russian].

  18. Esin, O.A., On the Anionic Complexes in Molten Slags, in Stroenie i svoistva metallurgicheskikh rasplavov (Structure and Properties of Metallurgical Melts), Trudy Inst. Metall., 1974, issue 28, pp. 76–90 [in Russian].

  19. Polyakov, V.B. and Ariskin, A.A., Simulation of the Composition and Proportions of Anions in Polymerized Silicate Melts, Fiz. Khim. Stekla, 2008, vol. 34, no. 1, pp. 66–80 [Glass Phys. Chem. (Engl. transl.), 2008, vol. 34, no. 1, pp. 50–62].

    Google Scholar 

  20. Ariskin, A.A. and Polyakov, V.B., Simulation of Molecular Mass Distributions and Evaluation of O2- Concentrations in Polymerized Silicate Melts, Geokhimiya, 2008, no. 5, pp. 467–486 [Geochem. Int. (Engl. transl.), 2008, vol. 46, no. 5, pp. 429–447].

  21. Fraser, D.G., Acid-Base Properties and Structons: Towards a Structural Model for Predicting the Thermodynamic Properties of Silicate Melts, Ann. Geophys., 2005, vol. 48, nos. 4–5, pp. 549–559.

    Google Scholar 

  22. Henderson, G.S., The Structure of Silicate Melts: AGlass Perspective, Can. Mineral., 2005, vol. 43, pp. 1921–1958.

    Article  CAS  Google Scholar 

  23. Mysen, B.O. and Richet, P., Silicate Glasses and Melts, Properties and Structure, Amsterdam: Elsevier, 2005.

    Google Scholar 

  24. Anfilogov, V.K, Bykov, V.K, and Osipov, A.A., Silikatnye rasplavy (Silicate Melts), Moscow: Nauka, 2005 [in Russian].

    Google Scholar 

  25. Malfait, W.J., Zakaznova-Herzog, V.P., and Halter, W.E., Quantitative Raman Spectroscopy: High-Temperature Speciation of Potassium Silicate Melts, J. Non-Cryst. Solids, 2007, vol. 353, pp. 4029–4042.

    Article  CAS  ADS  Google Scholar 

  26. Brandiss, M.E. and Stebbins, J.E., Effect of Temperature on the Structures of Silicate Liquids: 29Si NMR Results, Geochim. Cosmochim. Acta, 1988, vol. 52, pp. 2659–2669.

    Article  ADS  Google Scholar 

  27. Schneider, J., Mastelaro, V.R., Zanotto, E.D., Shakhmatkin, B.A., Vedishcheva, N.M., Wright, A.C., and Panepucci, H., On Distribution in Stoichiometric Silicate Glasses: Thermodynamic Calculations and 29Si High Resolution NMR Measurements, J. Non-Cryst. Solids, 2003, vol. 325, pp. 164–178.

    Article  CAS  ADS  Google Scholar 

  28. Halter, W.E. and Mysen, B.O., Melt Speciation in the System Na2O-SiO2, Chem. Geol., 2004, vol. 213, pp. 115–123.

    Article  CAS  Google Scholar 

  29. Koroleva, O.N., Thermodynamic Simulation and Raman Scattering Spectroscopy of Silicate Melts, Abstract of Cand. Sci. (Chem.) Dissertation, Yekaterinburg: Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences, 2009 [in Russian].

    Google Scholar 

  30. Zakaznova-Herzog, V.P., Malfait, W.J., Herzog, F., and Halter, W.E., Quantitative Raman Spectroscopy: Principles and Application to Potassium Silicate Glasses, J. Non-Cryst. Solids, 2007, vol. 353, pp. 4015–4028.

    Article  CAS  ADS  Google Scholar 

  31. Bale, C.W., Bélisle, E., Chartrand, P., Decterov, S.A., Eriksson, G., Hack, K., Jung, I.-H., Kang, Y.-B., Melançon, J., Pelton, A.D., Robelin, C., and Petersen, S., FactSage Thermochemical Software and Databases—Recent Developments, CALPHAD: Comput. Coupling Phase Diagrams Thermochem., 2009, vol. 33, pp. 295–311.

    CAS  Google Scholar 

  32. Shakhmatkin, B.A. and Vedishcheva, N.M., A Thermodynamic Approach to the Modeling of Physical Properties of Oxide Glasses, Fiz. Khim. Stekla, 1998, vol. 24, no. 3, pp. 333–344 [Glass Phys. Chem. (Engl. transl.), 1998, vol. 24, no. 3, pp. 229–236].

    Google Scholar 

  33. Lin, C.-C, Chen, S.-F., Liu, L.-G., and Li, C.-C., Anionic Structure and Elasticity of Na2O-MgO-SiO2 Glasses, J. Non-Cryst. Solids, 2007, vol. 353, pp. 413–425.

    Article  CAS  ADS  Google Scholar 

  34. Vedishcheva, N.M., Shakhmatkin, B.A., and Wright, A.C., The Structure-Property Relationship in Oxide Glasses: A Thermodynamic Approach, Adv. Mater. Res., 2008, vols. 39–40, pp. 103–110.

    Article  Google Scholar 

  35. Ariskin, A.A., Shil’dt, A.A., and Polyakov, V.B., Simulation of Molecular-Mass Distributions of Si Anions on the Liquidus of the Na2O-SiO2 System with the Inclusion of Q Structons, Geokhimiya, 2009 (in press) [Geochem. Int. (Engl. transl.), 2009 (in press)].

  36. Toop, G.W. and Samis, C.S., Activities of Ions in Silicate Melts, Trans. Metall. Soc. AIME, 1962, vol. 224, pp. 878–887.

    CAS  Google Scholar 

  37. Ottonello, G., Moretti, R., Marini, L., and Zuccolini, M.V., Oxidation State of Iron in Silicate Glasses and Melts: A Thermochemical Model, Chem. Geol., 2001, vol. 174, pp. 159–179.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Polyakov.

Additional information

Original Russian Text © V.B. Polyakov, A.A. Ariskin, A.V. Shil’dt, 2010, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polyakov, V.B., Ariskin, A.A. & Shil’dt, A.V. Analysis of disproportionation of Q n structons in the simulation of the structure of melts in the Na2O-SiO2 system. Glass Phys Chem 36, 579–588 (2010). https://doi.org/10.1134/S108765961005007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S108765961005007X

Key words

Navigation