Skip to main content

Advertisement

Log in

Microstructure of lead silicate melt under compression: insight from computer simulation

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The microstructure of lead silicate melt (Pb2SiO4) and its change under high pressure are investigated by molecular dynamics simulation. The models are constructed at temperature of 3000 K and in the 0–50 GPa pressure range. The microstructural correlate of pair radial distribution functions is clarified. Short range order (SRO) and intermediate range order (IRO) are investigated via topology analysis of SiOx units and SiOx-clusters. Microstructural analysis, cluster-analysis and visualization techniques are applied to clarify the characteristics of -Si-O- network structure. The local environment around Pb+2, Si+4 and O−2 ions, incorporation mechanism of Pb2+ cations into -Si-O- network, the microphase separation under compression have been clarified. Specially, the storage mechanism of hazardous metal ions (heavy metal ions in industrial and nuclear wastes) in silica-based multicomponent oxide systems is also discussed in detail.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.R. Cassar, R.F. Lancelotti, R. Nuernberg, M.L.F. Nascimento, A.M. Rodrigues, L.T. Diz, E.D. Zanotto, J. Chem. Phys. 147, 014501 (2017)

    Article  ADS  Google Scholar 

  2. T. Takaishi, M. Takahashi, J. Jin, T. Uchino, T. Yoko, J. Am. Ceram. Soc. 88, 1591 (2005)

    Article  Google Scholar 

  3. J.F. Stebbins, Am. Mineral. 101, 753 (2016)

    Article  ADS  Google Scholar 

  4. M. Ross et al., New J. Phys. 16, 093042 (2014)

    Article  ADS  Google Scholar 

  5. G.S. Henderson, Can. Mineral. 43, 1921 2005

  6. H. Jabraoui et al., J. Non Cryst. Solids 448, 16 (2016)

    Article  ADS  Google Scholar 

  7. N. Li, W.-Y. Ching, J. Non Cryst. Solids 383, 28 (2014)

    Article  ADS  Google Scholar 

  8. P.K. Hung, N.V. Hong, Eur. Phys. J. B 71, 105 (2009)

    Article  ADS  Google Scholar 

  9. G. Scannell, S. Barra, J. Non Cryst. Solids 448, 52 (2016)

    Article  ADS  Google Scholar 

  10. H. Jabraoui, Phys. Chem. Chem. Phys. 19, 29 (2017)

    Article  Google Scholar 

  11. T.K. Bechgaard et al., J. Non Cryst. Solids 441, 49 (2016)

    Article  ADS  Google Scholar 

  12. D.V. Sampaio et al., J. Non Cryst. Solids 499, 300 (2018)

    Article  ADS  Google Scholar 

  13. S. Kohara, H. Ohno, M. Takata, T. Usuki, H. Morita, K. Suzuya, J. Akola, L. Pusztai, Phys. Rev. B 82, 134209 (2010)

    Article  ADS  Google Scholar 

  14. J. Rybicki, A. Rybicka, A. Witkowska, G. Bergman’ski, A. Di Cicco, M. Minicucci, G. Mancini, J. Phys. Condens. Matter 13, 9781 (2001)

    Article  ADS  Google Scholar 

  15. F. Fayon, C. Bessada, D. Massiot, I. Farnan, J.P. Coutures, J. Non Cryst. Solids 232, 403 (1998)

    Article  ADS  Google Scholar 

  16. V. Sudarsan, V.K. Shrikhande, G.P. Kothiyal, S.K. Kulshreshtha, J. Phys. Condens. Matter 14, 6553 (2002)

    Article  ADS  Google Scholar 

  17. V.K. Shrikhande, V. Sudarsan, G.P. Kothiyal, S.K. Kulshreshtha, J. Non Cryst. Solids 283, 18 (2001)

    Article  ADS  Google Scholar 

  18. D. De Sousa Meneses, M. Malki, P. Echegut, J. Non Cryst. Solids 352, 769 (2006)

    Article  ADS  Google Scholar 

  19. K.H. Sun, J. Am. Ceram. Soc. 30, 277 (1947)

    Article  Google Scholar 

  20. K. Chomenko et al., Comput. Methods Sci. Technol. 10, 21 (2004)

    Article  Google Scholar 

  21. G. Cormier, T. Peres, J.A. Capobianco, J. Non Cryst. Solids 195, 125 (1996)

    Article  ADS  Google Scholar 

  22. F. Fayon, C. Landron, K. Sacurai et al., J. Non-Cryst. Solids, 243, 39 (1999)

    Article  ADS  Google Scholar 

  23. S.K. Lee, E.J. Kim, J. Phys. Chem. C 119, 748 (2014)

    Article  Google Scholar 

  24. K.N. Dalby, H.W. Nesbitt, V.P. Zakaznova-Herzog, P.L. King, Geochim. Cosmochim. Acta 71, 4297 (2007)

    Article  ADS  Google Scholar 

  25. N.V. Yen, N.V. Hong, P.K. Hung, N.V. Huy, Mater. Res. Express 2, 065201 (2015)

    Article  ADS  Google Scholar 

  26. K.V. Damodaran, B.G. Rao, K.J. Rao, Phys. Chem. Glasses 31, 212 (1990)

    Google Scholar 

  27. A. Rybicka et al., Comput. Methods Sci. Technol. 5, 67 (1999)

    Article  Google Scholar 

  28. G. Bergmanski et al., Task Q. 8, 393 (2004)

    Google Scholar 

  29. C. Katarzyna et al., Comput. Methods Sci. Technol. 10, 21 (2004)

    Article  Google Scholar 

  30. I.B. Kacem, L. Gautron, D. Coillot, D.R. Neuville, Chem. Geol. 461, 104 (2017)

    Article  ADS  Google Scholar 

  31. K. Yamada et al., J. Phys. Soc. Jpn. 55, 831 (1986)

    Article  ADS  Google Scholar 

  32. H. Wayne Nesbitt, M.E. Fleet, Geochim. Cosmochim. Acta 45, 235 (1981)

    Article  ADS  Google Scholar 

  33. I. Ben Kacem, L. Gautron, D. Coillot, D.R. Neuville, Chem. Geol. 461, 104 (2017)

    Article  ADS  Google Scholar 

  34. M. Rafiqul Ahsan, M. Alfaz Uddin, M. Golam Mortuza, Indian J. Pure Appl. Phys. 43, 89 (2005)

    Google Scholar 

  35. Q. Mei, C.J. Benmore, J.K.R. Weber, Phys. Rev. Lett. 98, 057802 (2007)

    Article  ADS  Google Scholar 

  36. D.I. Grimley, A.C. Wright, J. Non Cryst. Solids 119, 49 (1990)

    Article  ADS  Google Scholar 

  37. O.L.G. Alderman et al., Phys. Chem. Chem. Phys. 15, 8506 (2013)

    Article  Google Scholar 

  38. A.C. Wright, J. Non Cryst. Solids 179, 84 (1994)

    Article  ADS  Google Scholar 

  39. P.F. Mcmillan, B.T. Poe, Ph. Gillet, B. Reynard, Geochim. Cosmochim. Acta 58, 3653 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Nguyen Van Hong conducted the models; Nguyen Van Hong, Mai Thi Lan, Hoang Viet Hung, LuyenThi San analyzed data. Nguyen Van Hong wrote the manuscript. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Nguyen Van Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, N.V., Lan, M.T., Hung, H.V. et al. Microstructure of lead silicate melt under compression: insight from computer simulation. Eur. Phys. J. B 92, 268 (2019). https://doi.org/10.1140/epjb/e2019-100434-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2019-100434-1

Keywords

Navigation