Skip to main content
Log in

Analysis of the formation of Al2O3 + Fe nanocomposites

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The formation of Al2O3 + Fe nanocomposites (in the range 0–20 wt % Fe) in the course of three sequential processes, such as dispersion, compaction, and sintering at a temperature of 1573 K, is investigated. It is revealed that the sintering is accompanied by the formation of the spinel phase at interfaces. It is demonstrated that the composition of the sintered samples corresponds to an equilibrium composition at a temperature of approximately 1073 K and that the spinel phase serves as a barrier layer preventing oxidation of iron

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kislyi, P.S., Bodnaruk, N.I., Borovikova, M.S., Zaverukha, O.V., and Kozina, G.K., Kermety (Cermets), Kiev: Naukova Dumka, 1985 [in Russian].

    Google Scholar 

  2. Pulvermetallurgie, Sinter- und Verbundwerkstoffe, W. Schatt, Ed., Leipzig: VEB Deutscher Verlag für Grundstoffindustrie, 1978. Translated under the title Poroshkovaya metallurgiya. Spechennye i kompozitsionnye materialy, Moscow: Metallurgiya, 1983 [in German and Russian].

    Google Scholar 

  3. Schicker, S., Erny, T., García, D.E., Janssen, R. and Claussen, N., Microstructure and Mechanical Properties of Al-Assisted Sintered Fe/Al2O3 Cermets, J. Eur. Ceram. Soc., 1999, vol. 19, pp. 2455–2463.

    Article  CAS  Google Scholar 

  4. Composite Materials, Broutman, L. and Crock, R. Eds., vol. 1: Interfaces in Metal Matrix Composites, Metcalfe, A., Ed., New York: Academic, 1974. Translated under the title Kompozitsionnye materialy, Tom 1: Poverkhnosti razdela v metallicheskikh kompozitakh, Moscow: Mir, 1978.

    Google Scholar 

  5. Nagel, R. and Balogh, A.G., On the Behavior of Enhanced Mixing in Metal/Ceramic Interfaces, Nucl. Instrum. Methods Phys. Res., Sect. B, 2001, vols. 175–177, pp. 398–402.

    Article  Google Scholar 

  6. Trumble, K.P., Thermodynamic Analysis of Aluminate Formation at Fe/Al2O3 and Cu/Al2O3 Interfaces, Acta Metall. Mater., 1992, vol. 40, pp. S105–S110.

    Article  ADS  CAS  Google Scholar 

  7. Guichard, J.L., Tillement, O., and Mocellin, A., Alumina-Cromium Cermets by Hot Pressing of Nanocomposite Powders, J. Eur. Ceram. Soc., 1998, vol. 18, pp. 1743–1752.

    Article  CAS  Google Scholar 

  8. Sun, X. and Yeomans, J., Optimization of a Ductile-Particle-Toughened Ceramic, J. Am. Ceram. Soc., 1996, vol. 79, no. 10, pp. 2701–2717.

    Google Scholar 

  9. Ji, Y. and Yeomans, J.A., Processing and Mechanical Properties of 5 vol. % Cr Nanocomposites, J. Eur. Ceram. Soc., 2002, vol. 22, pp. 1927–1936.

    Article  CAS  Google Scholar 

  10. Elsukov, E.P., Dorofeev, G.A., Ul’yanov, A.I., Zagainov, A.V., and Maratkanova, A.N., Mössbauer Spectroscopy and Magnetic Studies of Nanocrystalline Iron Produced by Milling in an Argon Atmosphere, Fiz. Met. Metalloved., 2001, vol. 91, no. 3, pp. 46–53 [Phys. Met. Metallogr. (Engl. transl.), 2001 vol. 91, no. 3, pp. 258–265].

    CAS  Google Scholar 

  11. Shelekhov, E.V., Program Package for X-Ray Diffraction Analysis of Polycrystals, in Abstracts of Papers of the National Conference on Application of X-Ray, Synchrotron Radiation, Neutrons, and Electrons for Material Characterization (RSNE-97), Dubna, 1997, vol. 3, pp. 316–320 [in Russian].

  12. Nemtsova, O.M., The Method of Extraction of Subspectra with Appreciably Different Values of Hyperfine Interaction Parameters from Mössbauer Spectra, Nucl. Instrum. Methods Phys. Res., Sect. B, 2006, vol. 244, pp. 501–507.

    Article  ADS  CAS  Google Scholar 

  13. Povstugar, V.I., Shakov, A.A., Mikhailov, S.S., Voronina, E.V. and Elsukov, E.P., Resolution of Complex X-Ray Photoelectron Spectra Using Fast Discrete Fourier Transformation with Improved Convergence Procedure: Assessment of the Usability of the Procedure, Zh. Anal. Khim., 1998, vol. 53, no. 8, pp. 795–799 [J. Anal. Chem. (Engl. transl.), 1998, vol. 53, no. 8, pp. 697–700].

    Google Scholar 

  14. Ivanov, V.V., Paranin, S.N., Vikhrev, A.N., and Nozdrin, A.A., Effectiveness of a Dynamic Technique for Compacting Nanometer-Sized Powders, Materialovedenie, 1997, no. 5, pp. 49–55.

  15. Vatolin, N.A., Moiseev, G.K., and Trusov, B.G., Termodinamicheskoe modelirovanie v vysokotemperaturnykh neorganicheskikh sistemakh (Thermodynamic Simulation in High-Temperature Inorganic Systems), Moscow: Metallurgiya, 1994 [in Russian].

    Google Scholar 

  16. Coquay, P., Laurent, Ch., Peigney, A., Quénard, O., De Grave, E., and Vandenberghe, R.E., From Ceramic-Matrix Nanocomposites to the Synthesis of Carbon Nanotubes, Hyperfine Interact., 2000, vol. 130, pp. 275–299.

    Article  ADS  CAS  Google Scholar 

  17. Strohmeier, B.R., Leyden, D.E., Field, R.S., and Hercules, D.M., Surface Spectroscopic Characterization of Cu/Al2O3 Catalysts, J. Catal., 1985, vol. 94, pp. 514–530.

    Article  CAS  Google Scholar 

  18. Lindsay, J.R., Rose, H.J., Swartz, W.E., Watts, P.H., and Payburn, K.A., X-Ray Photoelectron Spectra of Aluminum Oxides: Structural Effects on the “Chemical Shift” Appl. Spectrosc., 1973, vol. 27, no. 1, pp. 1–5.

    Article  ADS  CAS  Google Scholar 

  19. Mani, B., Sitakara Rao, V., and Maiti, H.S., X-Ray and Electrical Conductivity Studies on Iron-Aluminium Mixed Oxides, J. Mater. Sci., 1980, vol. 15, pp. 925–930.

    Article  ADS  CAS  Google Scholar 

  20. Williams, G., Coles, G.S.V., Ferkel, H., and Riehmann, W., The Use of Nano-Crystalline Oxides as Gas Sensing Materials, in Proceedings of the International Conference on Solid-State Sensors and Actuators, Chicago, IL, United States, 1997, Chicago, 1997, pp. 551–554.

  21. Kiselev, V.F. and Krylov, O.V., Adsorbtsionnye protsessy na poverkhnosti poluprovodnikov i dielektrikov, Moscow: Nauka, 1978 [Adsorption Processes on Semiconductor and Dielectric Surfaces, Berlin: Springer, 1985].

    Google Scholar 

  22. Djuričić, B., Pickering, S., McGarry, D., Tambuyser, P., and Thomas, P., Preparation and Properties of Alumina-Ceria Nano-Nano Composites, J. Mater. Sci., 1999, vol. 34, pp. 1911–1919.

    Article  Google Scholar 

  23. Sankara Raman S., Nampoori, V.P.N., Vallabhan, C.P.G., Ambadas, G., and Sugunan, S., Photoacoustic Study of the Effect of Degassing Temperature on Thermal Diffusivity of Hydroxyl Loaded Alumina, Appl. Phys. Lett., 1995, vol. 67, no. 20, pp. 2939–2941.

    Article  ADS  Google Scholar 

  24. Bansal, C., Metal-to-Ceramic Bonding in (Al2O3 + Fe) Cermets Studies by Mössbauer Spectroscopy, Bull. Mater. Sci., 1984, vol. 6, no. 1, pp. 13–16.

    Article  CAS  Google Scholar 

  25. Zhuk, N.P., Kurs teorii korrozii i zashchity metallov (Course of the Theory of Corrosion and Protection of Metals), Moscow: Metallurgiya, 1976 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Yu. Goncharov.

Additional information

Original Russian Text © O.Yu. Goncharov, O.V. Karban’, O.M. Nemtsova, I.A. Il’in, 2009, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goncharov, O.Y., Karban’, O.V., Nemtsova, O.M. et al. Analysis of the formation of Al2O3 + Fe nanocomposites. Glass Phys Chem 35, 210–218 (2009). https://doi.org/10.1134/S108765960902014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S108765960902014X

Keywords

Navigation