Skip to main content
Log in

Valence state and speciation of uranium ions in borosilicate glasses with a high iron and aluminum content

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The valence state and the local environment of uranium ions in borosilicate glasses intended for immobilizing high-level wastes with high concentrations of iron and aluminum ions are investigated using X-ray absorption (XANES, EXAFS) spectroscopy. It is demonstrated that, in glasses predominantly containing iron oxides, at least 80% of the total uranium exists in a hexavalent form as uranyl ions. In high-alumina glasses, uranium is in hexavalent and pentavalent states; in this case, the fraction of the latter form increases with an increase of the uranium concentration and its local environment is similar to the configuration of an axially distorted tetrahedron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fosfatnye stekla s radiaktivnymi otkhodami (Phosphate Glasses with Radioactive Wastes), Vashman, A.A. and Polyakov, A.S., Eds., Moscow: TsNIIAtominform, 1997 [in Russian].

    Google Scholar 

  2. Marra, S.L., O’Driscoll, R.J., Fellinger, T.L., Ray, J.W., Patel, P.M., and Occhipinti, J.E., DWPF Vitrification—Transition to the Second Batch of HLW Radioactive Sludge, in Proceedings of the International Conference “Waste Management’99,” Tucson, AZ, 1999, CD-ROM, ID 48-5.

  3. Stefanovsky, S.V. and Marra, J.C., The Effect of Waste Loading on the Structure and Leach Resistance of Borosilicate Glass for Savannah River Site SB2 Waste Immobilization, in Proceedings of the International Conference “Waste Management’ 07,” Tucson, AZ, 2007, CDROM, ID 7132.

  4. Stefanovsky, S.V., Nikonov, B.S., and Marra, J.C., Characterization of the Glass-Ceramic Material Prepared upon Vitrification of an Iron-Containing Surrogate of High-Level Wastes in a Cold Crucible, Fiz. Khim. Stekla, 2007, vol. 33, no. 6, pp. 798–809 [Glass Phys. Chem. (Engl. transl.), 2007, vol. 33, no. 6, pp. 576–586].

    Google Scholar 

  5. Li, H., Vienna, J.D., Hrma, P., Smith, D.E., and Schwieger, M.J., Nepheline Precipitation in High-Level Waste Glasses-Compositional Effects and Impact on the Waste Form Acceptability, Mater. Res. Soc. Symp. Proc., 1997, vol. 465, pp. 261–268.

    CAS  Google Scholar 

  6. Li, H., Hrma, P., Vienna, J.D., Qian, M., Su, Y., and Smith, D.E., Effects of Al2O3, B2O3, Na2O, and SiO2 on Nepheline Formation in Borosilicate Glasses: Chemical and Physical Correlations, J. Non-Cryst. Solids, 2003, vol. 331, pp. 202–216.

    Article  ADS  CAS  Google Scholar 

  7. Peeler, D.K., Edwards, T.B., Reamer, I.A., and Workman, R.J., Nepheline Formation Study for Sludge Bach 4 (SB4): Phase 1. Experimental Results, Energy Citations Database, Report no. WSRC-TR-2005-00371 Revision 0, 2005.

  8. Schreiber, H. and Balazs, G., The Chemistry of Uranium in Borosilicate Glasses: Part 1. Simple Base Compositions Relevant to the Immobilization of Nuclear Waste, Phys. Chem. Glasses, 1982, vol. 23, pp. 139–146.

    CAS  Google Scholar 

  9. Eller, P.G., Jarvinen, G.D., Purson, J.D., Penneman, R.A., Ryan, R.R., Lytle, F.W., and Greegor, R.B., Actinide Valences in Borosilicate Glass, Radiochim. Acta, 1985, vol. 39, pp. 17–22.

    CAS  Google Scholar 

  10. Antonini, M., Merlini, A., and Thornley, F.R., EXAFS and Near Edge Absorption in Glasses for Nuclear Waste Storage in EXAFS and Near Edge Structure III: Proceedings of the 3rd International EXAFS Conference, Hodgson, K.O., Hedman, B., and Penner-Hahn, J.E., Eds., Berlin: Springer, 1984, vol. 2, pp. 349–351.

    Google Scholar 

  11. Veal, B.W., Mundy, J.N., and Lam, D.J., Actinides in Silicate Glasses, in Handbook on the Physics and Chemistry of the Actinides, Freeman, A.J. and Lander, G.H., Eds., Amsterdam: Elsevier, 1987, pp. 271–309.

    Google Scholar 

  12. Petit-Maire, D., Petiau, J., Calas, G., and Jacquet-Francillon, N., Local Structure around Actinides in Borosilicate Glasses, J. Phys. (Paris), 1986, vol. 47, no. 8, pp. 849–852.

    Google Scholar 

  13. Yudintsev, S.V., Omel’yanenko, B.I., and Lyubomilova, G.V., Experimental Investigation of the Valence State of Uranium in Granitic Melts, Geokhimiya, 1990, no. 9, pp. 1291–1297.

  14. Farges, F., Ponader, C.W., Calas, G., and Brown, G.E., Jr., Structural Environments of Incompatible Elements in Silicate Glass / Melt Systems: II. UIV, UV, and UVI, Geochim. Cosmochim. Acta, 1992, vol. 56, pp. 4205–4220.

    Article  ADS  CAS  Google Scholar 

  15. Hess, N.J., Weber, W.J., and Conradson, S.D., U and Pu L III XAFS of Pu-Doped Glass and Ceramic Waste Forms, J. Alloys Compd., 1998, vols. 271–273, pp. 240–243.

    Article  Google Scholar 

  16. Aloy, A.S., Trofimenko, A.V., Iskhakova, O.A., and Jardine, L.J., Uranium Redox States in Borosilicate Compositions, Mater. Res. Soc. Symp. Proc., 2004, vol. 824, pp. 345–350.

    CAS  Google Scholar 

  17. Brendebach, B., Denecke, M.A., Dardenne, K., Rothe, J., Weisenburger, S., Roth, G., Luckscheiter, B., Nesovic, M., and Mangold, S., XAFS Investigation of High Level Waste Glasses, in Proceedings of the Workshop on Speciation Techniques and Facilities for Radioactive Materials at Synchrotron Light Sources, Karlsruhe, Germany, 2007, pp. 183–191.

  18. Matyunin, Yu.I. and Yudintsev, S.V., Immobilization of U3O8 in Borosilicate Glass in an Induction Melter with a Cold Crucible, At. Energ., 1998, vol. 84, no. 3, pp. 230–36 [At. Energy (Engl. transl.), 1998, vol. 84, no. 3, pp. 173–178].

    Google Scholar 

  19. Stefanovsky, S.V., Maslakov, K.I., Teterin, A.Y., Teterin, Y.A., and Marra, J.C., Uranium Speciation in Borosilicate Waste Glass, in Proceedings of the XXXVI Journees des Actinides Symposium, Oxford, UK, 2006, p. 38.

  20. Ravel, B. and Newville, M., ATHENA, ARTEMIS, HEPHAESTUS: Data Analysis for X-Ray Absorption Spectroscopy Using IFEFFIT, J. Synchrotron Radiat., 2005, vol. 12, pp. 537–541.

    Article  PubMed  CAS  Google Scholar 

  21. Ankudinov, A.L. and Rehr, J.J., Relativistic Calculation of Spin-Dependent X-Ray-Absorption Spectra, Phys. Rev. B: Condens. Matter, 1997, vol. 56, p. R1712–R1716.

    ADS  CAS  Google Scholar 

  22. Stefanovsky, S.V. and Marra, J.C., The Effect of Waste Loading on the Structure and Leach Resistance of Borosilicate Glass for Savannah River Site SB2 Waste Immobilization, in Proceedings of the International Conference “Waste Management’07,” Tucson, AZ, 2007, CD-ROM, ID 7132.

  23. Stefanovsky, S.V., Nikonov, B.S., and Marra, J.C., Characterization of Glassy Materials for Immobilization of Radioactive Waste with a High Iron Oxide Content, Fiz. Khim. Stekla, 2008, vol. 34, no. 3, pp. 383–393 [Glass Phys. Chem. (Engl. transl.), 2008, vol. 34, no. 3, pp. 292–299].

    Google Scholar 

  24. Stefanovsky, S.V., Ptashkin, A.G., Knyazev, O.A., Zen’kovskaya, M.A., and Marra, J.C., Cold Crucible Vitrification of Uranium-Bearing High Level Waste Surrogate, Mater. Res. Soc. Symp. Proc., 2008 (in press).

  25. Appen, A.A., Khimiya stekla (Glass Chemistry), Leningrad: Khimiya, 1974 [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Stefanovsky.

Additional information

Original Russian Text © S.V. Stefanovsky, A.A. Shiryaev, J.V. Zubavitchus, A.A. Veligjanin, J.C. Marra, 2009, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stefanovsky, S.V., Shiryaev, A.A., Zubavitchus, J.V. et al. Valence state and speciation of uranium ions in borosilicate glasses with a high iron and aluminum content. Glass Phys Chem 35, 141–148 (2009). https://doi.org/10.1134/S1087659609020035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659609020035

Keywords

Navigation