Skip to main content
Log in

The structural state of iron in multicomponent aluminum iron borosilicate glass depending on their composition and synthesis conditions

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The oxidation states and coordination environment of iron ions in borosilicate glass used for the immobilization of iron-containing radioactive waste are studied by the methods of Mössbauer and Fourier transform IR spectroscopies. In homogeneous glass, containing no more than 50 wt % of waste oxides, iron is present in the form of Fe3+ and Fe2+ ions in octahedral coordination with oxygen. The phase of a iron-containing spinel, in which iron atoms with an oxidation number of +3 in the magnetically ordered state surrounded tetrahedrally by oxygen atoms (Fe3+O4) and iron in the two- and trivalent states in the octahedral oxygen environment (Fe3+O6 + Fe2+O6) are present, is precipitated at higher waste concentrations. Both the Mössbauer and IR spectra of glass crystalline materials are combinations of the corresponding individual spectra. The quantitative ratio of the doubly- and triply-charged iron ions in samples depends on the synthesis conditions. The maximum fraction of iron in the glass phase (about 28%) and, at the same time, the maximum fraction of the Fe3+ ions (91.3%) are observed in the sample prepared in a crucible by heating in a laboratory furnace in the air environment and subsequent quenching on a metal sheet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dmitriev, S.A. and Stefanovskii, S.V., Obrashchenie s radioaktivnymi otkhodami (Radioactive Waste Management), Moscow: Mendeleyev University of Chemical Technology of Russia, 2000.

    Google Scholar 

  2. Bowan, B.W.II., Joseph, I., Matlack, K.S., Han, H., Kot, W.K., and Pegg, I.L., Test of simultaneous melt rate and waste loading enhancement for DWPF HLW streams, in Waste Management 2010 Conference, Phoenix, Arizona, Unired States, March 7–11, 2010, CDROM, ID 10254.

    Google Scholar 

  3. Stefanovsky, S.V., Nikonov, B.S., and Marra, J.C., Characterization of glassy materials for immobilization of radioactive waste with a high iron oxide content, Glass Phys. Chem., 2008, vol. 34, no. 3, pp. 292–299.

    Article  Google Scholar 

  4. Kobelev, A.P., Stefanovsky, S.V., Lebedev, V.V., Polkanov, M.A., Knyazev, O.A., and Marra, J.C., Cold crucible vitrification of the savannah river site SB2 HLW surrogate at high waste loading, Eur. J. Glass Sci. Technol., Part A, 2009, vol. 50, no. 1, pp. 47–52.

    Google Scholar 

  5. Akatov, A.A., Nikonov, B.S., Omel’yanenko, B.I., Stefanovsky, S.V., and Marra, J.C., Structure of borosilicate glassy materials with high concentrations of sodium, iron, and aluminum oxides, Glass Phys. Chem., 2009, vol. 35, no. 3, pp. 245–259.

    Article  Google Scholar 

  6. Stefanovsky, S.V., Kobelev, A.P., Lebedev, V.V., Polkanov, M.A., Suntsov, D.Y., and Marra, J.C., The effect of waste loading on the characteristics of borosilicate SRS SB4 waste glasses, in Proceedings of the ICEM’09/DECOM’09: The 12th International Conference on Environmental Remediation and Radioactive Waste Management, Liverpool, United Kingdom, October 11–15, 2009, Liverpool, 2009, CD-ROM, paper 16196.

    Google Scholar 

  7. Stefanovsky, S.V., Kobelev, A.P., Lebedev, V.V., Polkanov, M.A., Ptashkin, A.G., Knyazev, O.A., and Marra, J.C., in Proceedings of the ICEM’09/DECOM’09: The 12th International Conference on Environmental Remediation and Radioactive Waste Management, Liverpool, United Kingdom, October 11–15, 2009, Liverpool, 2009, CD-ROM, paper 16197.

    Google Scholar 

  8. Stefanovskii, S.V., Ptashkin, A.G., Knyazev, O.A., Stefanovskaya, O.I., Nikonov, B.S., Omel’yanenko, B.I., and Marra, Dzh.K., Vitrification of a simulator of highlevel wastes with a high content of sodium, iron, and aluminum in the cold crucible and the characterization of the product, Fiz. Khim. Obrab. Mater., 2010, no. 1, pp. 88–97.

    Google Scholar 

  9. Akatov, A.A., Nikonov, B.S., Omel’yanenko, B.I., Stefanovskaya, O.I., Stefanovsky, S.V., Suntsov, D.Yu., and Marra, J.C., Influence of the content of a surrogate of iron aluminate high-level wastes on the phase composition and structure of glassy materials for their immobilization, Glass Phys. Chem., 2010, vol. 36, no. 1, pp. 45–52.

    Article  Google Scholar 

  10. Kobelev, A.P., Stefanovskii, S.V., Lebedev, V.V., Polkanov, M.A., Knyazev, O.A., Ptashkin, A.G., and Marra, J., Vitrification of a high-level iron-aluminate wastes simulator in a cold crucible, At. Energ., 2010, vol. 108, no. 1, pp. 33–39.

    Article  Google Scholar 

  11. Stefanovsky, S.V., Nikonov, B.S., Omelyanenko, B.I., and Marra, J.C., Phase composition and elemental distribution in the vitrified U-bearing HLW surrogate, Mater. Res. Soc. Symp. Proc., 2010, vol. 1265, pp. 121–126.

    Google Scholar 

  12. Stefanovsky, S.V., Lebedev, V.V., Suntsov, D.Yu., Nikonov, B.S., Omel’yanenko, B.I., Akatov, A.A., and Marra, J.C., Influence of the content of radioactive wastes with high concentrations of aluminum, sodium, and iron oxides on the phase composition and structure of glassy materials prepared in a “cold crucible,” Glass Phys. Chem., 2010, vol. 36, no. 4, pp. 419–430.

    Article  Google Scholar 

  13. Kobelev, A.P., Stefanovsky, S.V., Lebedev, V.V., Suntsov, D.Y., Polkanov, M.A., Knyazev, O.A., and Marra, J.C., Cold crucible vitrification of SRS SB4 HLW surrogate at high waste loadings, Ceram. Trans., 2010, vol. 222, pp. 91–103.

    Google Scholar 

  14. Glagolenko, Yu.V., Drozhko, E.G., and Rovnyi, S.I., The main directions of the solution of the environmental problems associated with the current and past activities of the FSUE PA “Mayak,” Vopr. Radiats. Bezop., 2006, no. 1, pp. 23–34.

    Google Scholar 

  15. Stefanovsky, S.V., Sorokaletova, A.N., Malinina, G.A., and Nikonov, B.S., The effect of waste loading on phase composition, structure and chemical durability of glassy materials for immobilization of high-sodium aluminum waste, in Proceedings of the Waste Management 2011 Conference, Phoenix, Arizona, United States, February 27–March 3, 2011, CD-ROM, ID 11475.

    Google Scholar 

  16. Lebedev, V.V., Shvetsov, S.Yu., Suntsov, D.Yu., Sorokaletova, A.N., and Stefanovskii, S.V., Development of the process of vitrification of high-level wastes from the PA “Mayak” using the IMCC technology, Vopr. Radiats. Bezop., 2011, no. 3, pp. 36–44.

    Google Scholar 

  17. Stefanovskii, S.V., Shiryaev, A.A., and Zubavichus, Ya.V., Structural state of iron in glasses and glass-crystalline materials for the immobilization of radioactive wastes with a high content of sodium and aluminum, Fiz. Khim. Obrab. Mater., 2012, no. 3, pp. 70–78.

    Google Scholar 

  18. Stefanovsky, S.V., Fox, K.M., Marra, J.C., Shiryaev, A.A., and Zubavichus, J.V., Structural features of high-Fe2O3 and high-Al2O3/Fe2O3 SRS HLW glasses, Eur. J. Glass Sci. Technol., Part B, 2012, vol. 53, no. 4, pp. 158–166.

    Google Scholar 

  19. Stefanovsky, S.V., Sorokaletova, A.N., and Nikonov, B.S., Phase composition and elemental partitioning in glass-ceramics containing high-Na/Al high level waste, J. Nucl. Mater., 2012, vol. 424, nos. 1–3, pp. 75–81.

    Article  Google Scholar 

  20. Matsnev, M.E. and Rusakov, V.S., SpectrRelax: An application for Mössbauer spectra modeling and fitting, AIP Conf. Proc., 2012, vol. 1489, pp. 178–185.

    Article  Google Scholar 

  21. Menil, F., Systematic trends of the 57Fe Mössbauer isomer shifts in (FeOn) and (FeFn) polyhedra: Evidence of a new correlation between the isomer shift and the inductive effect of the competing bond T–X(→ Fe) (where X is O or F and T any element with a formal positive charge), J. Phys. Chem. Solids, 1985, vol. 46, pp. 763–789.

    Article  Google Scholar 

  22. Vandenberghe, R.E. and Grave, E., Mössbauer effect studies of oxidic spinels, in Mössbauer Spectroscopy Applied to Inorganic Chemistry, Long, G.J. and Grandjean, F., Eds., New York: Plenum, 1989, vol. 3, pp. 59–182.

    Article  Google Scholar 

  23. Kolesova, V.A., Vibrational spectra and structure of alkali borate glasses, Fiz. Khim. Stekla, 1986, vol. 12, no. 1, pp. 4–13.

    Google Scholar 

  24. McMillan, P., Piriou, B., and Navrotsky, A., A Raman spectroscopic study of glasses along the joins silica–calcium aluminate, silica–sodium aluminate, and silica–potassium aluminate, Geochim. Cosmochim. Acta, 1982, vol. 46, pp. 2021–2037.

    Article  Google Scholar 

  25. Anfilogov, V.N., Bykov, V.N., and Osipov, A.A., Silikatnye rasplavy (Silicate Melts), Moscow: Nauka, 2005.

    Google Scholar 

  26. Plyusnina, I.I., Infrakrasnye spektry mineralov (Infrared Spectra of Minerals), Moscow: Moscow State University, 1977.

    Google Scholar 

  27. Wong, J. and Angell, C.A., Glass Structure by Spectroscopy, New York: Marcell Dekker, 1976.

    Google Scholar 

  28. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A. Theory and Applications in Inorganic Chemistry, 6th ed., Hoboken, New Jersey, United States: Wiley, 2009.

    Google Scholar 

  29. Van De Leest, R.E. and Roozeboom, F., Iron-silicate glassy films by sol–gel conversion induced by rapid thermal processing, Mater. Res. Soc. Symp. Proc., 1998, vol. 525, pp. 351–358.

    Article  Google Scholar 

  30. Mysen, B.O., Seifert, F., and Virgo, D., Structure and redox equilibria of iron-bearing silicate melts, Am. Mineral., 1980, vol. 65, pp. 867–884.

    Google Scholar 

  31. Dyer, M.D., A review of Mössbauer data on inorganic glasses: The effects of composition on iron valency and coordination, Am. Mineral., 1985, vol. 70, pp. 304–316.

    Google Scholar 

  32. Holland, D., Mekki, A., Gee, I., McConville, C.F., Johnson, J.A., Johnson, C.E., Appleyard, P., and Thomas, M., The structure of sodium iron silicate glass—A multi-technique approach, in Proceedings of the 33rd International Congress on Glass, San Francisco, California, United States, July 5–10, 1998, Choudhary, M.K., Huff, N.T., and Drummond, III, C.H., Eds., CD-ROM.

    Google Scholar 

  33. Kukkadapu, R.K., Li, H., Smith, G.L., Crum, J.D., Jeoung, J.-S., Poisl, W.H., and Weinberg, M.C., Mössbauer and optical spectroscopic study of temperature and redox effects on iron local environments in a Fedoped (0.5 mol % Fe2O3) 18Na2O–72SiO2 glass, J. Non-Cryst. Solids, 2003, vol. 317, pp. 301–318.

    Article  Google Scholar 

  34. Wang, Z., Cooney, T.F., and Sharma, S.K., In situ structural investigation of iron-containing silicate liquids and glasses, Geochim. Cosmochim. Acta, 1995, vol. 59, pp. 1571–1577.

    Article  Google Scholar 

  35. Bugaev, L., Farges, F., Rusakova, E., Sokolenko, A., Latokha, Ya., and Avakyan, L., Fe coordination environment in Fe(II)and Fe(III)-silicate glasses via the Fourier-transform analysis of Fe K-XANES, Phys. Scr., 2005, vol. T115, pp. 215–217.

    Google Scholar 

  36. Farges, F., Rossano, S., Lefrére, Y., Wilke, M., and Brown, Jr, G.E., Iron in silicate glasses: A systematic analysis of pre-edge, XANES, and EXAFS features, Phys. Scr., 2005, vol. T115, pp. 957–959.

    Google Scholar 

  37. Wilke, M., Farges, F., Partzsch, G.M., Schmidt, C., and Behrens, H., Speciation of Fe in silicate glasses and melts by in-situ XANES spectroscopy, Am. Mineral., 2007, vol. 92, pp. 44–56.

    Article  Google Scholar 

  38. Hannant, O.M., Bingham, P.A., Hand, R.J., and Forder, S.D., A Mössbauer study of iron in vitrified wastes, Mater. Res. Soc. Symp. Proc., 2008, vol. 1107, pp. 215–222.

    Article  Google Scholar 

  39. Goldman, D.S. and Bewley, D.E., Ferrous/ferric Mössbauer analysis of simulated nuclear waste glass with and without computer fitting, J. Am. Ceram. Soc., 1985, vol. 68, pp. 691–695.

    Article  Google Scholar 

  40. Hunter, R.T., Edge, M., Kalivretenos, A., Brewer, K.M., Brock, N.A., Hawkes, A.E., and Fanning, J.C., Determination of the Fe2+/Fe3+ ratio in nuclear waste glasses, J. Am. Ceram. Soc., 1989, vol. 72, pp. 943–947.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Stefanovskaya.

Additional information

Original Russian Text © Ya.S. Glazkova, S.N. Kalmykov, I.A. Presnyakov, O.I. Stefanovskaya, S.V. Stefanovsky, 2015, published in Fizika i Khimiya Stekla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glazkova, Y.S., Kalmykov, S.N., Presnyakov, I.A. et al. The structural state of iron in multicomponent aluminum iron borosilicate glass depending on their composition and synthesis conditions. Glass Phys Chem 41, 367–377 (2015). https://doi.org/10.1134/S1087659615040057

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659615040057

Keywords

Navigation