Skip to main content
Log in

Geochemistry of Plastic Deformed Olivine from Ophiolite Peridotites and Dunites of Kraka Massifs (Southern Urals)

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Rock-forming olivines from mantle ultramafic rocks of Kraka massifs have been studied by several methods, including microstructural analysis, scanning electron microscopy, and LA-ICP-MS. In all studied peridotite and dunite samples, olivine demonstrates a distinct crystallographic preferred orientation (CPO) due to the rock formation under high-temperature plastic flow conditions. Olivine from wallrock dunites at podiform chromitite deposits is substantially depleted in Al, as compared to olivine from peridotites and thin dunite veinlets in the dunite–peridotite complex. Olivine aggregates from primary dunites contain numerous newly formed high-Al Cr-spinel segregations as thin needles and rods, turning into morphologically more complicated forms as they become larger. They are interpreted as resulting from such processes as segregation of trace elements, coalescence, and spheroidization of newly formed Cr-spinel grains induced by plastic deformation of olivine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Anderson, D.L., Theory of the Earth, Boston: Blackwell Scientific Publications, 1989.

    Google Scholar 

  2. Arai, S., Chromian spinel lamellae in olivine from the Iwanai-Dake peridotite mass, Hokkaido, Japan, Earth Planet. Sci. Lett., 1978, vol. 39, pp. 267–273.

    Article  Google Scholar 

  3. Arai, S., Characterization of spinel peridotites by olivine-spinel compositional relationships: Review and interpretation, Chem. Geol, 1994, vol. 113, pp. 191–204.

    Article  Google Scholar 

  4. Arai, S. and Miura, M., Podiform chromitites do form beneath mid-ocean ridges, Lithos, 2015, vol. 232, pp. 143–149.

    Article  Google Scholar 

  5. Ballhaus, C., Berry, R., and Green, D., High pressure experimental calibration of the olivine-orthopyroxene–spinel oxygen geobarometer: implication for the oxydation state of the upper mantle, Contrib. Miner. Petrol., 1991, vol. 107, pp. 27–40.

    Article  Google Scholar 

  6. Ballhaus, C., Origin of the podiform chromite deposits by magma mingling, Earth Planet. Sci. Lett., 1998, vol. 156, pp. 185–193.

    Article  Google Scholar 

  7. Bazylev, B.A. and Silantyev, S.A., Geodynamical interpretation of subsolidus recrystallization of mantle spinel peridotites: II. Ophiolites and xenoliths, Petrology, 2000, vol. 8, pp. 347–369.

    Google Scholar 

  8. Bershov, S.V., Mineeva, R.M., Speransky, A.V., and Khafner, S., Incorporation of Cr and Al in the forsterite structure (according to EPR and DENR data), Miner. Zh., 1981, no. 3, pp. 62–70.

  9. Bershov, L.V., Gaite, J.-M., Hafner, S.S., and Rager, H., Electron paramagnetic resonance and ENDOR studies of Cr3+–Al3+ pairs in forsterite, Phys. Chem. Mineral., 1983, vol. 9, pp. 95–101.

    Article  Google Scholar 

  10. Borisenko, E.B. and Gnesin, B.A., Recrystallization and ageing of undoped and strontium-doped potassium chloride crystals after incomplete polymorphic transformation under pressure, Phys. Solid State, 2003, vol. 45, pp. 868–874.

    Article  Google Scholar 

  11. Borisova, A.Y., Ceuleneer, G., Kamenetsky, V.S., Arai, S., Bejina, F., Abily, B., Bindeman, I.N., Polve, M., De Parseval, P., Aigouy, T., and Pokrovski, G.S., A new view on the petrogenesis of the Oman ophiolite chromitites from microanalyses of chromite-hosted inclusions, J. Petrol, 2012, vol. 53, pp. 2411–2440.

    Article  Google Scholar 

  12. Brey, G.P. and Köhler, T., Geothermobarometry in 4-phase lherzolites: 2. New thermobarometers, and practical assessment of existing thermobarometers, J. Petrol., 1990, vol. 31, pp. 1353–1378.

    Article  Google Scholar 

  13. Bunin, K.P. and Baranov, A.A., Metallografiya (Metallography), Moscow: Metallurgiya, 1970.

    Google Scholar 

  14. Bussweiler, Y., Brey, G.P., Pearsona, D.G., Stachel, T., Stern, R.A., Hardmana, M.F., Kjarsgaard, B.A., and Jacksonc, S.E., The aluminum-in-olivine thermometer for mantle peridotites—Experimental versus empirical calibration and potential applications, Lithos, 2017, vol. 272–273, pp. 301–314.

  15. Carter, N.L., Steady state flow of rocks, Rev. Geophys. Space Phys., 1976, vol. 14, pp. 301–360.

    Article  Google Scholar 

  16. Cassard, D., Nicolas, A., Rabinowitch, M., Moutte, J., Leblanc, M., and Prinzhoffer, A., Structural classification of chromite pods in southern New Caledonia, Econ. Geol., 1981, vol. 76, pp. 805–831.

    Article  Google Scholar 

  17. De Hoog, J.C.M., Gall, L., and Cornell, D.H., Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry, Chem. Geol., 2010, vol. 270, pp. 196–215.

    Article  Google Scholar 

  18. Dick, H.J. and Bullen, T., Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas, Contrib. Miner. Petrol., 1984, vol. 86, pp. 54–76.

    Article  Google Scholar 

  19. Dodd, R.T., Minor element abundances in olivines of the Sharps (H3) chondrite, Contrib. Miner. Petrol., 1973, vol. 42, pp. 156–167.

    Article  Google Scholar 

  20. Dudnikova, V.B. and Urusov, V.S., Simulation of forsterite protonation by the interatomic potential method, Geochem. Int., 2014, vol. 52, pp. 261–270.

    Article  Google Scholar 

  21. Fabries, J., Spinel–olivine geothermometry in peridotites from ultramafic complexes, Contrib. Miner. Petrol., 1979, vol. 69, pp. 329–336.

    Article  Google Scholar 

  22. Franz, L. and Wirth, R., Spinel inclusions in olivine of peridotite xenoliths from TUBAF seamount (Bismarck Archipelago/Papua New Guinea): evidence for the thermal and tectonic evolution of the oceanic lithosphere, Contrib. Mineral. Petrol., 2000, vol. 10, pp. 283–295.

    Article  Google Scholar 

  23. Gonzalez-Jimenez, J.M., Griffin, W.L., Proenza, A., Gervilla, F., O’Reilly, S.Y., Akbulut, M., Pearson, N.J., and Arai, S., Chromitites in ophiolites: how, where, when, why? Part II. The crystallisation of chromitites, Lithos, 2014, vol. 189, pp. 148–158.

    Article  Google Scholar 

  24. Gorelik, S.S., Rekristallizatsiya metallov i splavov (Recrystallization of Metals and Alloys, Moscow: Metallurgiya, 1978.

  25. Grant, K.J. and Wood, B.J., Experimental study of the incorporation of Li, Sc, Al and other trace elements into olivine, Geochim. Cosmochim. Acta, 2010, vol. 74, pp. 2412–2428.

  26. Green, H.W. and Gueguen, Y., Deformation of peridotite in the mantle and extraction by kimberlite: a case history documented by fluid and solid precipitates in olivine, Tectonophysics, 1983, vol. 92, pp. 71–92.

    Article  Google Scholar 

  27. Harris, L.B. and Schlederer, J.L., Mass transport along grain boundary pipelines in KBr, Acta Metall., 1971, vol. 19, pp. 577–588.

    Article  Google Scholar 

  28. Honeycombe, R.W.K., The Plastic Deformation of Metals Edward Arnold Ltd., 1968.

  29. Jacques, J.L. and Green, D.H., Anhydrous melting of peridotites at 0–15 kb pressure and the genesis of tholeiitic basalts, Contrib. Mineral. Petrol., 1980, vol. 73, pp. 287–310.

    Article  Google Scholar 

  30. Johan, Z., Martin, R.F., and Ettler, V., Fluids are bound to be involved in the formation of ophiolitic chromite deposits, Eur. J. Mineral., 2017, vol. 29, pp. 543–555.

    Article  Google Scholar 

  31. Johnson, C., Podiform chromite at Voskhod, Kazakhstan, Ph.D. Thesis, Cardiff University, 2012.

  32. Karato, S.-I., Deformation of Earth Materials. An Introduction to the Rheology of Solid Earth, Cambridge University Press, 2008.

    Book  Google Scholar 

  33. Kelemen, P.B., Dick, H.J.B., and Quick, J.E., Formation of harzburgite by pervasive melt/rock reaction in the upper mantle, Nature, 1992, vol. 358, pp. 635–641.

    Article  Google Scholar 

  34. Khisina, N.P. and Wirth, P., The behavior of protons during wet olivine deformation under the conditions of the kimberlite process, Geochem. Int., 2010, vol. 48, no. 4, pp. 338–345.

    Article  Google Scholar 

  35. Köhler, T., Der Ca-Gehalt von Olivin in Gleichgewicht mit Clinopyroxen als Geothermometer, Ph.D. Thesis, University of Mainz, 1989.

  36. Kohlstedt, D.L., Goetze, C., Durham, W.B., and Van der Sande, J.B., A new technique for decorating dislocations in olivine, Science, 1976, vol. 191, pp. 1045–1046.

    Article  Google Scholar 

  37. Lago, B.L., Rabinowicz, M., and Nicolas, A., Podiform chromite ore bodies: a genetic model, J. Petrol., 1982, vol. 23, pp. 103–125.

    Article  Google Scholar 

  38. Leblanc, M. and Ceuleneer, G., Chromite crystallization in a multicellular magma flow: evidence from a chromitite dike in the Oman ophiolite, Lithos, 1992, vol. 27, pp. 231–257.

    Article  Google Scholar 

  39. Lesnov, F.P., Redkozemel’nye element v ul’tramafitovykh I mafitovykh porodakh i ikh mineralakh. Kn.1. Glavnye tipy porod. Prodoobrazuyushchie mineraly (Rare Earth Elements in Ultramafic and Mafic Rocks and their Minerals, Vol. I: Main Types of Rocks. Rock-Forming Minerals), Novosibirsk: Geo, 2007.

  40. Mineeva, R.M., Kamozin, P.N., Gayster, A.V., Dudnikova, V.B., Zharikov, E.V., and Urusov, V.S., EPR study of Cr3+ doping centers in Mg2SiO4:Cr,Li crystals and a computer structure simulation, Geochem. Int., 2003, vol. 41, no. 2, pp. 182–186.

    Google Scholar 

  41. O’Neill, H.St.C. and Wall, V.J., The olivine-spinel oxygen geobarometer, the nickel precipitation curve and the oxygen fugacity of the upper mantle. J. Petrol., 1987, vol. 28, pp. 1169–1192.

    Article  Google Scholar 

  42. Novikov, I.I., Teoriya termicheskoi obrabotki metallov (Theory of Thermal Processing of Metals), Moscow: Metallurgiya, 1986.

    Google Scholar 

  43. Ono, A., Fe–Mg partitioning between spinel and olivine, J. Japan. Assoc. Min. Petr. Econ. Geol., 1983, vol. 78, pp. 115–122.

    Article  Google Scholar 

  44. Ozawa, K., Partitioning of elements between constituent minerals in peridotites from the Miyamori ultramafic complex, northeast japan: estimation of P-T condition and igneous composition of minerals, J. Faculty Sci. Univer. Tokyo, Sec. II, 1986, vol. 21, no. 3, pp. 115–137.

    Google Scholar 

  45. Paton, C., Hellstrom, J., Paul, B., Woodhead, J., and Hergt, J., Iolite: Freeware for the visualisation and processing of mass spectrometric data, J. Anal. Atomic Spectr., 2011, vol. 26, pp. 2508–2518.

    Article  Google Scholar 

  46. Pearce, J., Barker, P.F., Edwards, S.J., Parkinson, I.J., and Leat, P.T., Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic, Contrib. Mineral. Petrol., 2000, vol. 139, pp. 36–53.

    Article  Google Scholar 

  47. Petukhov, B.V., Dynamic aging of dislocations in materials with a high crystalline relief: Competition between diffusion and impurity entrainment, Crystall. Rept., vol. 54, no. 1, pp. 82–88.

  48. Poirier, J.-P., Creep of Crystals. High-Temperature Deformation Processes in Metals, Ceramics and Minerals, Cambridge University Press, 1985.

    Book  Google Scholar 

  49. Purton, J.A., Allan, N.L., and Blundy, J.D., Calculated solution energies of heterovalent cations in forsterite and diopside: implications for trace element partitioning, Geochim. Cosmochim. Acta, 1997, vol. 61, pp. 3927–3936.

    Article  Google Scholar 

  50. Pushkarev, E.V., Kamenetsky, V.S., Morozova, A.V., Khiller, V.V., Glavatskykh, S.P., and Rodemann, T., Ontogeny of ore Cr-rich spinel and composition of inclusions as indicators of the pneumatolytic-hydrothermal origin of PGM-bearing chromitites from Kondyor massif, the Aldan Shield, Geol. Ore Deposits, 2015, vol. 57, pp. 352–380.

    Article  Google Scholar 

  51. Rager, H., Electron spin resonance of trivalent chromium in forsterite Mg2SiO4, Phys. Chem. Mineral., 1977, vol. 1, pp. 371–379.

    Article  Google Scholar 

  52. Risold, A.-C., Trommsdorff, V., and Grobety, B., Genesis of ilmenite rods and palisades along humite-type defects in olivine from Alpe Arami, Contrib. Miner. Petrol, 2001, vol. 140, pp. 619–628.

    Article  Google Scholar 

  53. Roeder, R.L., Campbell, I.H., and Jamieson, H.E., A Re-evaluation of the olivine-spinel geothermometer, Contrib. Miner. Petrol, 1979, vol. 68, pp. 325–334.

    Article  Google Scholar 

  54. Ryabov, I.D., EPR study of chromium-doped forsterite crystals: Cr3+(M1) with associated trivalent ions Al3+ and Sc3+, Phys. Chem. Mineral., 2012, vol. 39, pp. 725–732.

    Article  Google Scholar 

  55. Sanfilippo, A., Tribuzio, R., and Tiepolo, M., Mantle-crust interactions in the oceanic lithosphere: Constraints from minor and trace elements in olivine, Geochim. Cosmochim. Acta, 2014, vol. 141, pp. 423–439.

    Article  Google Scholar 

  56. Sanfilippo, A., Tribuzio, R., Ottolini, L., and Hamada, M., Water, lithium and trace element compositions of olivine from Lanzo South replasive mantle dunites (Western Alps): New constraints into melt migration processes at cold thermal regimes, Geochim. Cosmochim. Acta, 2017, vol. 214, pp. 51–72.

    Article  Google Scholar 

  57. Saveliev, D.E., Ul’tramafitoye massivy Kraka (Yuzhnyi Ural): osobennosti stroeniya I sostava peridotite–dunit–khromitovykh assotsiatsii (Kraka Ultramafic Massifs (the Southern Urals): Structure and Composition of Peridotite–Dunite–Chromitite Association, Ufa: Bashkirskaya encyclopedia, 2018.

  58. Saveliev, D.E. and Blinov, I.A., Compositional variations of chrome spinels in the ore-bearing zones of the Kraka ophiolite and the chromitite origin, Bull. Perm Univ. Geol, 2017, vol. 16, no. 2, pp. 130–156.

    Article  Google Scholar 

  59. Saveliev, D.E. and Fedoseev, V.B., The solid-state redistribution of mineral particles in the upwelling mantle flow as a mechanism of the chromite concentration in the ophiolite ultramafic rocks (on the example of Kraka ophiolite, the Southern Urals), Georesources, 2019, vol. 21, no. 1, pp. 31–46.

    Article  Google Scholar 

  60. Saveliev, D.E., Belogub, E.V., Blinov, I.A., Kozhevnikov, D.A., and Kotlyarov, V.A., Petrological evidences of syndeformation segregation of chromites during dunite formation process: example of Kraka ophiolites, Southern Urals, Mineralogiya, 2016, no. 2 (4), pp. 56–77.

  61. Saveliev, D.E., Puchkov, V.N., Sergeev, S.N., and Musabirov, I.I., Deformation-induced decomposition of enstatite in mantle peridotite and its role in partial melting and chromite ore formation, Dokl. Earth Sci., 2017, vol. 476, no. 1, pp. 1058–1061.

    Article  Google Scholar 

  62. Saveliev, D.E., Shilovskykh, V.V., and Sergeev, S.N., Microstructural features of ophiolitic chromitites in the Kraka massif, Southern Urals. I. Banded disseminated ores, Zap. Ross. Mineral. O-va, 2020, no. 5, pp. 59–81.

  63. Spandler, C. and O’Neill, H.S.C., Diffusion and partition coefficients of minor and trace elements in San Carlos olivine at 1300°C with some geochemical implications, Contrib. Mineral. Petrol., 2010, vol. 159, pp. 791–818.

    Article  Google Scholar 

  64. Spandler, C., O’Neill, H.St.C., and Kamenetsky, V.S., Survival times of anomalous melt inclusions: constraints from element diffusion in olivine and chromite, Nature, 2007, vol. 447, pp. 303–306.

    Article  Google Scholar 

  65. Urusov, V.S., Tauson, V.L., and Akimov, V.V., Geokhimiya tverdogo tela (Solid State Geochemistry), Moscow: GEOS, 1997.

    Google Scholar 

  66. Vlasak, G., Hartmanova, M., and Besedikova, S., The kinetics of barium precipitation at dislocations in NaCl monocrystals, Czech. J. Phys., vol. 29, pp. 658–668.

  67. Wells, P.R.A., Pyroxene thermometry in simple and complex systems, Contrib. Mineral. Petrol., 1977, vol. 62, pp. 129–139.

    Article  Google Scholar 

  68. Witt-Eickschen, G. and O’Neill, H.S., The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite, Chem. Geol, 2005, vol. 221, pp. 65–101.

    Article  Google Scholar 

  69. Wood, B.J. and Banno, S., Garnet–orthopyroxene and orthopyroxene–clinopyroxene relationships in simple and complex systems, Contrib. Mineral. Petrol., 1973, vol. 42, pp. 109–124.

    Article  Google Scholar 

  70. Zwang, R.Y., Su, J.F., Mao, H.K., and Liou, J.G., Magnetite lamellae in olivine and clinohumite from Dabie UHP ultramafic rocks, Central China, Am. Mineral., 1999, vol. 84, pp. 564–569.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to I.I. Musabirov, S.N. Sergeev, and I.A. Blinov for their help in the electron microscopic study of ultramafic rocks. Analytical studies were carried out on equipment of the South Urals Federal Research Center of Mineralogy and Geoecology, Ural Branch, Russian Academy of Sciences, and the Center for Collective Use, Institute for Metals Superplasticity Problems, Russian Academy of Sciences.

Funding

The study was carried out under the state task (topic no. 0246-2019-0078).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. E. Saveliev or D. A. Artemyev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Maslennikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saveliev, D.E., Artemyev, D.A. Geochemistry of Plastic Deformed Olivine from Ophiolite Peridotites and Dunites of Kraka Massifs (Southern Urals). Geol. Ore Deposits 64, 476–494 (2022). https://doi.org/10.1134/S107570152207008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107570152207008X

Keywords:

Navigation