Skip to main content
Log in

Primorskoe Epithermal Ag-Au Deposit (Northeastern Russia): Geological Setting, Mineralogy, Geochemistry, and Ore Formation Conditions

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The potentially large Primorskoe epithermal Au-Ag deposit is represented by three areas: the Kholodnyi, Spiridonych, and Teplyi. It is located in the Omsukchan district of Magadan oblast, where mining is carried out at the largely similar Dukat, Lunnoe, Gol’tsovoe, Arylakh, Tidit, Pereval’noe, and other deposits. The deposit under review is located in the Kalalaga volcano-tectonic depression, where ore has been emplaced in a gently dipping sequence of Late Cretaceous ignimbrites and rhyolites more than 700 m in thickness crosscut by numerous intermediate and mafic dykes. According to drilling data, there is a leucocratic granite massif 400–500 m beneath the deposit, which is exposed on the surface in the northeastern part of the ore field. The presence of Bi-bearing galena and matildite, as well as medium- to high-temperature metasomatic facies (epidote and actinolite) and the specific physicochemical conditions of epithermal Ag-Au ore emplacement, attests to the above-intrusion position and the role of granitoids as high-temperature magmatic fluid generators responsible for supplying Bi and heating the host rock. The ore chemistry is quite consistent with its mineral composition. High Mn and Ag; elevated Au; low Cu, Pb, Zn, Sb, As, Bi, and Te; and low total REE concentrations were established, along with negative Eu and positive Ce anomalies. The high Te/Se, Sr/Ba, Y/Ho, and U/Th ratios in the ores are due to their location in the area influenced by the granitoid pluton. The physicochemical parameters of ore emplacement in the Teplyi area are unusual: high temperatures, low salt concentrations, and fluid densities typical of a “dry vapor” environment. The obtained data allow the Primorskoe to be classified as an intermediate sulfidation epithermal deposit. The data discussed below are of practical use for regional metallogenic forecasting, exploration, and economic assessment of epithermal Ag-Au deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bau, M., Rare–earth element mobility during hydrothermal and metamorphic fluid–rock interaction and the significance of the oxidation state of europium, Chem. Geol., 1991, vol. 93, pp. 219–230.

    Article  Google Scholar 

  • Bodnar, R.J. and Vityk, M.O., Interpretation of microterhrmometric data for H2O–NaCl fluid inclusions, Fluid Inclusions in Mminerals: Methods and Applications, Siena: Pontignano, 994, pp. 117–130.

  • Borisenko, A.S., Cryometric study of salt composition of gas–liquid inclusions in minerals, Geol. Geofiz., 1977, no. 8, pp. 16–27.

    Google Scholar 

  • Bortnikov, N.S., Gamyanin, G.N., Vikent’eva, O.V., et al., Fluid composition and origin in the hydrothermal system of the Nezhdaninsky gold deposit, Sakha (Yakutia), Russia, Geol. Ore Deposits, 2007, vol. 49, no. 2, pp. 87–128.

    Article  Google Scholar 

  • Brown, P., Flincor: a computer program for the reduction and investigation of fluid inclusion data, Am. Mineral., 1989, vol. 74, pp. 1390–1393.

    Google Scholar 

  • Goryachev, N.A., Vikent’eva, O.V., Bortnikov, N.S., et al., The world–class Natalka gold deposit, Northeast Russia: REE patterns, fluid inclusions, stable oxygen isotopes, and formation conditions of ore, Geol. Ore Deposits, 2008, vol. 50, no. 5, pp. 362–390.

    Google Scholar 

  • Jorge, E., Ricardo, C., Heinz–Jürgen, B., Preliminary mineralogy and ore petrology of the intermediate–sulfidiation Pallancata deposit, Ayacucho, Peru, Can. Mineral., 2013, vol. 51, pp. 67–91.

    Article  Google Scholar 

  • Kravtsova, R.G., Geokhimiya i usloviya formirovaniya zolotoserebryanykh rudoobrazuyushchikh sistem Severnogo Priokhot’ya (Geochemistry and Conditions of Formation of Gold–Silver Ore–Forming Systems of the Northern Okhotsk Region), Novosibirsk: “Geo”, 2010.

    Google Scholar 

  • Kryazhev, S.G., Prokof’ev, V.Yu., and Vasyuta, Yu.V., Application of ICP–MS for analysis of composition of oreforming fluids, Vestn. Mosk. Univ., Ser. 4. Geol., 2006, no. 4, pp. 30–36.

    Google Scholar 

  • Manning, D.A.C., Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones, Chem. Geol., 1994, vol. 111, pp. 111–129.

    Article  Google Scholar 

  • Mineev, D.A., Lantanoidy v rudakh redkozemel’nykh i kompleksnykh mestorozhdenii (Lanthanides in Ores of the Rare–Earth Element and Complex Deposits), Moscow: Nauka, 1974.

    Google Scholar 

  • Monecke, T., Kempe, U., and Gotze, J., Genetic significance of the trace element content in metamorphic and hydrothermal quartz: a reconnaissance study, Earth. Planet. Sci. Lett., 2002, vol. 202, pp. 709–724.

    Article  Google Scholar 

  • Oreskes, N. and Einaudi, M.T., Origin of rare–earth element enriched hematite breccias at the Olympic Dam Cu–U–Au–Ag deposit, Roxby Downs, South Australia, Econ. Geol., 1990, vol. 85, no. 1, pp. 1–28.

    Google Scholar 

  • Panet, I., et al., Mapping the mass distribution of earth’s mantle using satellite–derived gravity gradients, Nature Geosci., 2014, vol. 7, no. 2, p. 131.

    Article  Google Scholar 

  • Prokof’ev, V.Yu., Geokhimicheskie osobennosti rudoobrazuyushchikh flyuidov gidrotermal’nykh mestorozhdenii zolota razlichnykh geneticheskikh tipov (Geochemical Features of Ore–Forming Fluids of Hydrothermal Gold Deposits of Different Genetic Types), Novosibirsk: Nauka, Sibirskaya izdatel’skaya firma RAN, 2000.

    Google Scholar 

  • Prokof’ev, V.Yu. and Pek, A.A., Problems in estimation of the formation depth of hydrothermal deposits by data on pressure of mineralizing fluids, Geol. Ore Deposits, 2015, vol. 57, no. 1, pp. 1–20.

    Article  Google Scholar 

  • Richards, J.P., Giant ore deposits formed by optimal alignments and combinations of geological processes, Nature Geosci., 2013, vol. 6.

    Google Scholar 

  • Savva, N.E., and Shakhtyrov, V.G., The Ol’cha gold–silver deposit: tectonic setting, structure, and mineralogy, Geol. Ore Deposits, 2011, vol. 53, no. 5, pp. 412–433.

    Google Scholar 

  • Savva, N.E., Sidorov, A.A., and Volkov, A.V., Cu–Ag sulfides as indicators of pre–porphyritic epithermal Au–Ag deposits in Northeastern Russia, Dokl. Earth Sci., 2016, vol. 469, pp. 782–786.

    Article  Google Scholar 

  • Savva, N.E., Volkov, A.V., and Sidorov, A.A., Thermal metamorphism of Au–Ag ores of the Nyavlenga Deposit (Northeast Russia), Dokl. Earth Sci., 2007, vol. 413, pp. 370–375.

    Article  Google Scholar 

  • Serebro. Geologiya, mineralogiya, genezis, zakonomernosti razmeshcheniya mestorozhdenii (Silver. Geology, Mineralogy, Genesis, and Distribution of Deposits), Moscow: Nauka, 1989.

  • Sidorov A.A., Belyi V.F., Volkov A.V., et al., The gold–silver Okhotsk–Chukotka volcanic belt, Geol. Ore Deposits, 2009, vol. 51, no. 6, pp. 441–455.

    Article  Google Scholar 

  • Sidorov, A.A., Starostin, V.I., and Volkov, A.V., Rudnoformatsionnyi analiz (Ore Formation Analysis), Moscow: MAKS Press, 2011.

    Google Scholar 

  • Simmons, S.F., White, N.C., and John, D.A., Geological characteristics of epithermal precious metal and base metal deposits, Econ. Geol., 2005, vol. 100, pp. 485–522.

    Article  Google Scholar 

  • Struzhkov, S.F. and Konstantinov, M.M., Metallogeniya zolota i serebra Okhotsko–Chukotskogo vulkanogennogo poyasa (Gold and Silver Metallogeny of the Okhotsk–Chukotka), Moscow: Nauch. mir, 2005.

    Google Scholar 

  • Taylor, S.R. and McLennan, S.M., The Continental Crust: its Composition and Evolution, Oxford: Blackwell, 1985.

    Google Scholar 

  • Vinokurov S.F. Europium Anomalies in Ore Deposits and Their Geochemical Significance, Dokl. Earth Sci., 1996, vol. 347, pp. 281–283.

    Google Scholar 

  • Vinokurov, S.F., Kovalenker, V.A., Safonov, Yu.G., et al., REE in quartz from epithermal gold deposits: distribution and genetic implications, Geochem. Int., 1999, vol. 37, no. 2, pp. 145–152.

    Google Scholar 

  • Volkov A.V., Murashov K.Yu., and Sidorov A.A. Geochemical Patterns of Epithermal Ore Formation in the Okhotsk–Chukotka Volcanoplutonic Belt (Northeast Russia), Dokl. Earth Sci., 2017, vol. 474, pp. 595–598.

    Google Scholar 

  • Volkov, A.V., Sidorov, A.A., and Starostin, V.I., Metallogeniya vulkanogennykh poyasov i zon aktivizatsii (Metallogeny of Volcanogenic Belts and Activation Zones), Moscow: OOO “MAKS Pres”, 2014.

    Google Scholar 

  • Zharikov V.A., Gorbachev N.S., Lightfoot, P., et al., Rare earth element and yttrium distribution between fluid and basaltic melt at pressures of 1–12 kbar: evidence from experimental data, Dokl. Earth Sci., 1999, vol. 366, pp. 543–545.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Volkov.

Additional information

Russian Text © N.E. Savva, A.V. Volkov, A.A. Sidorov, E.E. Kolova, K.Yu. Murashov, 2019, published in Geologiya Rudnykh Mestorozhdenii, 2019, Vol. 61, No. 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savva, N.E., Volkov, A.V., Sidorov, A.A. et al. Primorskoe Epithermal Ag-Au Deposit (Northeastern Russia): Geological Setting, Mineralogy, Geochemistry, and Ore Formation Conditions. Geol. Ore Deposits 61, 50–73 (2019). https://doi.org/10.1134/S1075701519010069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701519010069

Keywords

Navigation