Skip to main content
Log in

Golʼtsovoe AgPbZn Deposit (Northeastern Russia): Geological Setting, Mineralogy, Geochemistry, and Ore Formation Conditions

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The Gol’tsovoe Ag–Pb–Zn-deposit (1600 t silver in ores with an average grade of 1025 g/t Ag) is located on the southeastern flank of the Dukat mining district, at the junction of the Balygychan–Sugoi rift trough and the Okhotsk–Chukotka Volcanic Belt (OCVB). The Dukat district is the largest silver producer in Russia. The Gol’tsovoe deposit is located 2 km north of the Pestraya granitoid intrusion, in the structurally complex zone of a fault contact of the Upper Triassic terrigenous sediments and Late Cretaceous volcanic rocks. The contact consists of a series of fault planes within a 0.5–1 km wide belt, along which the western block, composed of felsic volcanics, has been downthrown more than 1 km. The host Upper Cretaceous rhyolitic and rhyodacitic ignimbrites are intruded by subvolcanic nevadite bodies. A characteristic feature of the deposit is the occurrence of en-echelon galena veins and veinlets with high Ag grades at the upper levels of orebodies. Massive, coarsely banded, and spotted ore structures are predominant. Ore geochemistry agrees well with the mineral composition. The ores are enriched in a wide spectrum of elements: Ag, Sb, Pb, Cd, As, Zn, Bi, In, W, Sn, Mn, Cu, Li, Tl, and Cs. They are characterized by a low total REE abundance (33.34–50.69) and a negative lanthanide distribution type. Commercially significant potential by-products are Cd, In, and Bi. Galena is the main Ag mineral concentrator: the high Ag concentrations in this mineral are due to the occurrence of small inclusions of a large group of independent Ag-bearing minerals, argentotetrahedrite and pyrargyrite especially, and a small amount of myargirite, polybasite, etc. Argentite and native Ag occur in limited amounts. Tin minerals are represented by stannite, canfieldite, and less frequent cassiterite. Oxidation zone has been tracked over the entire mineralization depth and displays a pronounced linear trend. Oxidized ores are dominated by Zn, Pb, Fe, Ca, and Ba sulfates; less abundant Fe, Mn, and Zn oxides; and subordinate carbonates and clays; total sulfides and native metals (Cu, Ag) do not exceed 2%. Ore oxidation degree is 40.3%. The sulfide–quartz–chlorite veins of the Gol’tsovoe deposit formed at moderate temperatures (276–138°С) from low-concentration chloride hydrothermal fluids (4.2–0.2 wt % NaCl eq.), saturated with Na and К cations and Mg in subordinate amount. The obtained data allow the Gol’tsovoe deposit to be classified as an epithermal intermediate sulfidation deposit. A two-stage ore emplacement model is proposed. During the first stage Ag–Pb–Zn ore was emplaced as a result of the functioning of a near-surface hydrothermal system of volcanic origin. During the second stage, imprinted Sn mineralization was emplaced in the Ag–Pb–Zn ore veins as a result of tin-bearing magmatogenic fluid inflow at the lower levels of the deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

Notes

  1. Report at FSBU “Rosgeolfond”.

REFERENCES

  1. Albinson, T., Norman, D.I., Cole, D., and Chomiak, B., Controls on the formation of low–sulfidation epithermal deposits in Mexico: Constraints from fluid inclusion and stable isotope data, Soc. Econ. Geol., Spec. Publ., 2001, vol. 8, 2001, pp. 1–32.

  2. Anikina, E.Yu., Bortnikov, N.S., Klubnikin, G.K., Gamyanin, G.N., and Prokof’ev, V.Yu., The Mangazeya Ag–Pb–Zn vein deposit hosted in sedimentary rocks, Sakha–Yakutia, Russia: mineral assemblages, fluid inclusions, stable isotopes (C, O, S), and origin, Geol. Ore Deposits, 2016, vol. 58, no. 3, pp. 182–212.

    Article  Google Scholar 

  3. Barton, P.B. and Toulmin, P., Phase relations involving sphalerite in the Fe–Zn–S system, Econ. Geol., 1966, vol. 61, no. 5, pp. 815–849.

    Article  Google Scholar 

  4. Berman, Yu.S., Prokof’ev, V.Yu., Kozerenko, S.V., Eliseeva, N.A., and Kolpakova, N.N., Rejuvenation of gold–silver mineralization of the Dukat volcanogenic deposit: evidence from fluid inclusion study, Geokhimiya, 1993, no. 4, pp. 539–548.

  5. Biagioni, C., George, L.L., Cook, N.J., Makovicky, E., Moelo, Y., Pasero, M., Sejkora, J., Stanley, C.J., Welch, M.D., and Bosi, F., The tetrahedrite group: nomenclature and classification, Am. Mineral., J. Earth Planet. Mater., 2020, vol. 105, no. 1, pp. 109–122.

    Google Scholar 

  6. Bodnar, R.J. and Vityk, M.O., Interpretation of microterhrmometric data for H2O−NaCl fluid inclusions, Fluid Inclusions in Minerals: Methods and Applications, Pontignano: Siena, 1994, pp. 117−130.

  7. Borisenko, A.S., Cryometric study of salt composition of gas–liquid inclusions in minerals, Geol. Geofiz., 1977, no. 8, pp. 16–27.

  8. Bortnikov, N.S., Geochemistry and origin of the ore-forming fluids in hydrothermal–magmatic systems in tectonically active zones, Geol. Ore Deposits, 2006, vol. 48, no. 1, pp. 1–23.

    Article  Google Scholar 

  9. Brown, P., FLINCOR: a computer program for the reduction and investigation of fluid inclusion data, Am. Mineral., 1989, vol. 74, pp. 1390–1393.

    Google Scholar 

  10. Dvurechenskaya, S.S., Gipergennye mineraly serebryanykh mestorozhdenii (Spergene Mienrals of Silver Deposits), Moscow: TsNIGRI, 2001.

  11. Epifanova, A.P., Composiiton and mineralogical zoning of a silver deposit of the Pestrinsky ore cluster, Problemy rudno-formatsionnogo analiza i poiskovoi mineralogii na Severo-Vostoke Rossii (Problemy Ore-Formational Analysis and Prospecting Mineralogy at the Nortehast Russia), Magadan: SVKNII DVO RAN, 1994, pp. 102–112.

    Google Scholar 

  12. Filimonova, L.G., Postmagmatic minerals as indicators of the rift-type gold–silver mineralization: evidence from the Dukat volcanoplutonic structure, Kolyma, 2002, no. 3, pp. 2–12.

  13. Gamyanin, G.N., Anikina, E.Yu., Bortnikov, N.S., Alpatov, V.V., Borisenko, A.C., and Nosik, L.P., The Prognoz Silver–Polymetallic Deposit, Sakha: Mineralogy, Geochemistry, and Origin, Geol. Ore Deposits, 1998, vol. 40, no. 5, pp. 391–407.

    Google Scholar 

  14. Geodinamika, magmatizm i metallogeniya Vostoka Rossii (Geodynamics, Magmatism, and Metallogeny of East Russia), Khanchuk, A.I, Eds., Vladivostok: Dal’nauka, 2006.

  15. Girdler, R.W., Neuman, E.R., Ramberg, I.B., and Heyer, K.S., Tectonics and Geophysics of Continental Rifts, Springer, 1978.

    Google Scholar 

  16. Konstantinov, M.M., Kostin, A.V., and Sidorov, A.A., Geologiya mestorozhdenii serebra (Geology of Silver Deposits) Yakutsk: GUP NIP “Sakhapoligrafizdat”, 2003.

  17. Konstantinov, M.M., Natalenko, V.E., Kalinin, A.I., and Struzhkov, S.F., Zoloto–serebryanoe mestorozhdenie Dukat (Dukat Gold–Silver Deposit), Moscow: Nedra, 1998.

  18. Kotlyar, I.N., Rusakova, T.B., and Gagieva, A.M., Buyunda–Sugoi ore-controlling area of the Northeast Russian unique metallogenic area, Tikhookean. Geol., 2004, vol. 23, no. 1, pp. 3–19.

    Google Scholar 

  19. Kotlyar, I.N., Zhulanova, I.L., Rusakova, T.B., and Gagieva, A.M., Izotopnye sistemy magmaticheskikh i metamorficheskikh kompleksov Severo-Vostoka Rossii (Isotope Systems of the Magmatic and Metamorphic Complexes of Northeast Russia), Magadan: SVKNII DVO RAN, 2001.

  20. Kravtsova, R.G., Geokhimiya i usloviya formirovaniya zolotoserebryanykh rudoobrazuyushchikh sistem Severnogo Priokhot’ya (Geochemistry and Conditions of Formation of the Gold–Silver Ore–Formingn Systems of the Northern Okhotsk Region), Novosibirsk: Akademicheskoe izd-vo “GEO”, 2010.

  21. Kravtsova, R.G., Zakharov, M.N., and Shatkov, N.G., Mineralogical and geochemical features of host rocks of the Gol’tsovoe silver–base metal deposit (Northeastern Russia), Geol. Ore Deposits, 1998, vol. 40, no. 3, pp. 197–210.

    Google Scholar 

  22. Kryazhev, S.G. and Dvurechenskaya, S.S., Conditions of formation of silver–base metal ores of the Okhotsk–Chukotka volcanogenic belt: isotope data, XVI Simpozium po geokhimii izotopov. Tezisy dokladov (Proc. 16th Symposium on Isotope Geochemistry), Moscow: IGEM RAN, 2001, pp. 127–128.

  23. Kryazhev, S.G., Prokof’ev, V.Yu., and Vasyuta, Yu.V., Application of ICP-MS in analysis of composition of the ore–forming fluid, Vestn. Mosk. Gos. Univ., Ser. 4. Geologiya, 2006, no. 4, pp. 30–36.

  24. Kuznetsov, V.M. and Livach, A.E., Structure and metallogenic zoning of the Balygychan–Sugoi trough, Problemy metallogenii rudnykh raionov Severo–Vostoka Rossii: sbornik nauchnykh trudov (Metallogenic Problems of Ore Districts of Northeast Russia: a Collection of Papers), Magadan: SVKNII DVO RAN, 2005, pp. 156–176.

    Google Scholar 

  25. Kuznetsov, V.M., Zhigalov, S.V., Vedernikova, T.A., and Shpikerman, V.I., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1 : 1 000 000 (tret’e pokolenie). Seriya Verkhoyano–Kolymskaya. List R-56—Seimchan. Ob’yasnitel’naya Zapiska (State Geological map of the Russian Federation. Scale 1 : 1 000 000 (Third Generation). Verkhoyansk–Kolyma Series. Sheet R-56 –Seimchan. Explanatory Note), Shpikerman, V.I, Eds., St.Petersburg: Katrograf. Fabr. VSEGEI, 2008.

  26. Loucks, R., Lemish, J., and Damon, P.E., Polimetallic epithermal fissure vein mineralization, Topia, Durango, Econ. Geol., 1988, vol. 83, no. 8, pp. 1560–1582.

    Article  Google Scholar 

  27. Lusk, J. and Calder, B.O.E., The composition of sphalerite and associated sulfides in reactions of the Cu–Fe–Zn–S, Fe–Zn–S and Cu–Fe–S systems at 1 bar and temperatures between 250 and 535°C, Chem. Geol., 2004, vol. 203, nos. 3–4, pp. 319–345.

    Article  Google Scholar 

  28. Lyons, J.I., Geology and ore deposits of Bolanos silver district, Jalisko, Mexico, Econ. Geol., 1988, vol. 83, no. 8, pp. 1499–1528.

    Article  Google Scholar 

  29. McDonough, W.F. and Sun, S.S., The composition of the earth, Chem. Geol., 1995, vol. 120, pp. 223–253.

    Article  Google Scholar 

  30. Mineev, D.A., Lantanoidy v rudakh redkozemel’nykh i kompleksnykh mestorozhdenii (Lanthanides in the Ore of Rare–Earth and Complex Deposits), Moscow: Nauka, 1974.

  31. Ohmoto, H., Stable isotope geochemistry of ore deposits, Rev. Mineral., 1986, vol. 16, pp. 491–559.

    Google Scholar 

  32. Petrov, O.V., Mikhailov, B.K., Shevchenko, S.S., Rozinov, M.I., Kolesnikov, D.I., Lokhov, K.I., Prasolov, E.M., Prilepskii, E.B., Berezhnaya, N.G., Matukov, D.I., Kapitonov, I.N., Bykova, E.V., and Sergeev, S.A., Isotope–geochemical studies of the Dukat unique gold–silver deposit as a key to understanding volcanogeic ore formation, Regional. Geol. Metallogen., 2006, vol. 27, pp. 60–76.

    Google Scholar 

  33. Plyashkevich, A.A., Mineralogiya i geokhimiya olovo–serebro–polimetallicheskikh mestorozhdenii Severo–Vostoka Rossii (Mineralogy and Geochemistry of the Tin–Silver–Base Metal Deposits of Northeast Russia), Magadan: SVKNII DVO RAN, 2002.

  34. Roedder, E., Fluid Inclusions, Washington: Mineral. Soc. Am., 1984.

  35. Sack, R.O. and Loucks, R.R., Thermodynamic properties of tetrahedrite–tennantite: constraints on the interdependence of the Ag ↔ Cu, Fe ↔ Zn, Cu ↔ Fe, and As ↔ Sb exchange reactions, Am. Mineral., 1985, vol. 70, nos. 11–12, pp. 1270–1289.

    Google Scholar 

  36. Safonov, Yu.G., Bortnikov, N.S., Zlobina, T.M., Chernyshev, V.F., Dzainukov, A.B., and Prokof’ev, V.Yu., Polymetal (Ag, Pb, U, Cu, Bi, Zn, F) Adrasman–Kanimansur ore field (Tadzhikistan),and its ore-forming system. I: Geology, mineralogy, and structural conditions of the ore deposition, Geol. Ore Deposits, vol. 42, no. 3, pp. 175–188.

  37. Savva, N.E., Mineralogiya serebra Severo-Vostoka Rossii (Silver Mineralogy of Northeast Russia), Moscow: Triumf, 2018.

  38. Savva, N.E., Metallogeny of continental rift with reference to the Dukat ore district, Problemy metallogenii rudnykh raionov Severo-Vostoka Rossii: sbornik nauchnykh trudov (Metallogenic Problems of Ore Districts of Northeast Russia: A Collection of Papers), Magadan: SVKNII DVO RAN, 2005. pp. 196–220.

    Google Scholar 

  39. Serebro (geologiya, mineralogiya, genezis, zakonomernosti razmeshcheniya mestorozhdenii) (Silver: Geology, Mineralogy, Genesis, and Distribution of Deposits), Moscow: Nauka, 1989.

  40. Shatkov, N.G., Mineralogical–Geochemical Indicators of the Tin–Silver Mineralization of the Omsukchan District, Extended Abstract of Candidate’s (Geol.–Min) Dissertation, St. Petersburg: VSEGEI, 1997.

  41. Shilo, N.A., Sakharova, M.S., Krivitskaya, N.N., Ryakhovskaya, S.K., and Bryzgalov, I.A., Mineralogiya i geneticheskie osobennosti zoloto–serebryanogo orudeneniya severo-zapadnoi chasti Tikhookeanskogo obramleniya (Mineralogy and Genetic Features of Gold–Silver Mineralization of the Northwestern Pacific Margin), Moscow: Nauka, 1992.

  42. Shumilova, L.V. and Kostikova, O.S., Analysis of influence of ore composition of the Gol’tsovoe deposit on the enrichment parameters, Vestn. ZabGU, 2015, vol. 5 (120), pp. 46–55.

    Google Scholar 

  43. Shumilova, L.V. and Kostikova, O.S., Sulfidization of the silver–base metal ores of the Gol’tsovoe deposit for decreasing silver loss with concentration tailings, Zap. Gorn. Inst., 2018, vol. 230, pp. 160–166.

    Google Scholar 

  44. Sidorov, A.A. and Volkov, A.V., Giant silver ore deposits of Russia, Dokl. Earth Sci., 2003, vol. 390, no. 3, pp. 516–519.

    Google Scholar 

  45. Sillitoe, R.H. and Hedenquist, J.W., Linkages between volcanotectonic settings, ore fluid compositions, and epithermal precious metal deposits, In: Volcanic, Geothermal, and Ore–Forming Fluids: Rulers and Witnesses of Processes within the Earth, Simmons, S.F., Graham, I., Eds., Soc. Econ. Geol., Sp. Publ., 2003, vol. 10, pp. 315–343.

    Google Scholar 

  46. Simmons, F.A., White, N.C., and John, D.A., Geological characteristics of epithermal precious and base metal deposits, Econ. Geol., 2005, vol. 100, pp. 485–522.

    Article  Google Scholar 

  47. Struktura i stroenie zemnoi kory Magadanskogo sektora Rossii po geologo–geofizicheskim dannym (Structure of the Earth’s crust of the Magadan Sector of Russia: Geological–Geophysical Data), Sal’nikov, A.S., Eds., Novosibirsk: Nauka, 2007.

  48. Struzhkov, S.F. and Konstantinov, M.M., Metallogeniya zolota i serebra Okhotsko–Chukotskogo vulkanogennogo poyasa (Gold and Silver Metallogeny of the Okhotsk–Chukotka Volcanogenic Belt), Moscow: Nauchnyi mir, 2005.

  49. Taylor, S.R. and McLennan, S.M., The Continental Crust: its Composition and Evolution, Oxford: Blackwell, 1985.

    Google Scholar 

  50. Umitbaev, R.B., Okhotsko–Chaunskaya metallogenicheskaya provintsiya (Okhotsk–Chaun Metallogenic Province), Moscow: Nauka, 1986.

  51. Volkov, A.V., Sidorov, A.A., Prokof’ev, V.Yu., Savva, N.E., Kolova, E.E., and Murashov, K.Yu., Epithermal mineralization in the Okhotsk–Chukchi volcano-plutonic belt, J. Volcanol. Seismol., 2018, vol. 12, no. 6, pp. 359–378.

    Article  Google Scholar 

  52. Wang, L., Qin, K.Z., Song, G.X., and Li, G.M., A review of intermediate sulfidation epithermal deposits and subclassification, Ore Geol. Rev., 2019, vol. 107, pp. 434–456.

    Article  Google Scholar 

  53. Wilkinson, J.J., Simmons, S.F., and Stoffell, B., How metalliferous brines line Mexican epithermal veins with silver, Sci. Rep., 2013, vol. 3. https://doi.org/10.1038/srep02057

  54. Yarmolyuk, V.V. and Kovalenko, V.I., Riftogennyi magmatizm aktivnykh kontinental’nykh okrain i ego rudonosnost' (Rift Magmatism of Active Continental Margins and its Ore Potential), Moscow: Nauka, 1991.

  55. Zharikov, V.A., Gorbachev, N.S., Lightfoot, P., and Doherty, W., Rare Earth element and yttrium distribution between fluid and basaltic melt at pressures of 1–12 kbar: evidence from experimental data, Dokl. Earth Sci., 1999, vol. 366, no. 4, pp. 543–545.

    Google Scholar 

Download references

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 13.1902.21.0018). We are grateful to the management and geologists of the Magadan branch of JSC Polimetall for assistance in fieldworks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Volkov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Murashova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savva, N.E., Volkov, A.V., Lyubimtseva, N.G. et al. Golʼtsovoe AgPbZn Deposit (Northeastern Russia): Geological Setting, Mineralogy, Geochemistry, and Ore Formation Conditions. Geol. Ore Deposits 63, 185–211 (2021). https://doi.org/10.1134/S1075701521030065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701521030065

Keywords:

Navigation