Skip to main content
Log in

Porphyry-Style Petropavlovskoe Gold Deposit, the Polar Urals: Geological Position, Mineralogy, and Formation Conditions

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Geological and structural conditions of localization, hydrothermal metasomatic alteration, and mineralization of the Petropavlovskoe gold deposit (Novogodnenskoe ore field) situated in the northern part of the Lesser Ural volcanic–plutonic belt, which is a constituent of the Middle Paleozoic island-arc system of the Polar Urals, are discussed. The porphyritic diorite bodies pertaining to the late phase of the intrusive Sob Complex play an ore-controlling role. The large-volume orebodies are related to the upper parts of these intrusions. Two types of stringer–disseminated ores have been revealed: (1) predominant gold-sulfide and (2) superimposed low-sulfide–gold–quartz ore markedly enriched in Au. Taken together, they make up complicated flattened isometric orebodies transitory to linear stockworks. The gold potential of the deposit is controlled by pyrite–(chlorite)–albite metasomatic rock of the main productive stage, which mainly develops in a volcanic–sedimentary sequence especially close to the contacts with porphyritic diorite. The relationships between intrusive and subvolcanic bodies and dating of individual zircon crystals corroborate a multistage evolution of the ore field, which predetermines its complex hydrothermal history. Magmatic activity of mature island-arc plagiogranite of the Sob Complex and monzonite of the Kongor Complex initiated development of skarn and beresite alterations accompanied by crystallization of hydrothermal sulfides. In the Early Devonian, due to emplacement of the Sob Complex at a depth of approximately 2 km, skarn magnetite ore with subordinate sulfides was formed. At the onset of the Middle Devonian, the large-volume gold porphyry Au–Ag–Te–W ± Mo,Cu stockworks related to quartz diorite porphyry—the final phase of the Sob Complex— were formed. In the Late Devonian, a part of sulfide mineralization was redistributed with the formation of linear low-sulfide quartz vein zones. Isotopic geochemical study has shown that the ore is deposited from reduced, substantially magmatic fluid, which is characterized by close to mantle values δ34S = 0 ± 1‰, δ13C =–6 to–7‰, and δ18O = +5‰ as the temperature decreases from 420–300°C (gold–sulfide ore) to 250–130°C (gold–(sulfide)–quartz ore) and pressure decreases from 0.8 to 0.3 kbar. According to the data of microanalysis (EPMA and LA-ICP-MS), the main trace elements in pyrite of gold orebodies are represented by Co (up to 2.52 wt %), As (up to 0.70 wt %), and Ni (up to 0.38 wt %); Te, Se, Ag, Au, Bi, Sb, and Sn also occur. Pyrite of the early assemblages is characterized by high Co, Te, Au, and Bi contents, whereas the late pyrite is distinguished by elevated concentrations of As (up to 0.7 wt %), Ni (up to 0.38 wt %), Se (223 ppm), Ag (up to 111 ppm), and Sn (4.4 ppm). The minimal Au content in pyrite of the late quartz–carbonate assemblage is up to 1.7 ppm and geometric average is 0.3 ppm. The significant correlation between Au and As (furthermore, negative–0.6) in pyrite from ore of the Petropavlovskoe deposit is recorded only for the gold–sulfide assemblage, whereas it is not established for other assemblages. Pyrite with higher As concentration (up to 0.7 wt %) is distinguished only for the Au–Te mineral assemblage. Taking into account structural–morphological and mineralogical–geochemical features, the ore–magmatic system of the Petropavlovskoe deposit is referred to as gold porphyry style. Among the main criteria of such typification are the spatial association of orebodies with bodies of subvolcanic porphyry-like intrusive phases at the roof of large multiphase pluton; the stockwork-like morphology of gold orebodies; 3D character of ore–alteration zoning and distribution of ore components; geochemical association of gold with Ag, W, Mo, Cu, As, Te, and Bi; and predominant finely dispersed submicroscopic gold in ore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bakker, R.J., Package FLUIDS 1. Computer programs for analysis of fluid inclusions data and for modeling bulk fluid properties, Chem. Geol., 2003, vol. 194, p. 3.

    Article  Google Scholar 

  • Benevol’skii, B.I., Blinova, E.V., Brazhnik, A.V., et al., Metodicheskoe rukovodstvo po otsenke prognoznykh resursov almazov, blagorodnykh i tsvetnykh metallov. Vypusk “Zoloto” (Methodical Textbook on the Assessment of the Predicted Resources of Diamonds, Noble and Non-Ferrous Metals. Volume “Gold”), Moscow: TsNIGRI, 2002.

    Google Scholar 

  • Benevol’skii, B.I., Volchkov, A.G., and Protskii, A.G., Prospects of the development of ore raw base of the goldmining industry in the Polar Urals, in Mineral. Res. Rossii. Ekonomika Upravlenie, 2004, no. 2, pp. 10–15.

    Google Scholar 

  • Bezmen, N.I., Eremin, N.I., Narazauli, I.G., et al., Pyrite–chalcopyrite geothermometer: cobalt distribution, Geokhimiya, 1978, no. 3, pp. 384–389.

    Google Scholar 

  • Brown, P., Flincor: a computer program for the reduction and investigation of fluid inclusion data, Am. Mineral., 1989, vol. 74, pp. 1390–1393.

    Google Scholar 

  • Cathelineau, M. and Neiva, D., A chlorite solid solution geothermometer. The Loa Asufres (Mexico) geothermal system, Contrib. Mineral. Petrol., 1985, vol. 91, no. 3, pp. 235–244.

    Article  Google Scholar 

  • Chernyaev, E.V., Chernyaeva, E.I., and Sedel’nikova, A.Yu., Geology of the Novogodnee-Monto gold–skarn deposit, Polar Urals, Mater. XI nauch. konf. Chteniya A.N. Zavaritskogo (Proceedings of the 11th Conference Zavaritskii Reading), Yekaterinburg: IGiG UrO RAN, 2005, pp. 131–137.

    Google Scholar 

  • Chi, G.X. and Xue, C.J., An overview of hydrodynamic studies of mineralization, Geosci. Front., 2011, vol. 2, no. 3, pp. 423–438.

    Article  Google Scholar 

  • Didenko, A.N., Kurenkov, S.A., and Ruzhentsev, S.V., Tektonicheskaya istoriya Polyarnogo Urala (Tectonic History of the Polar Urals), Moscow: Nauka, 2001.

    Google Scholar 

  • Dushin, V. A., Magmatizm i geodinamika paleokontinental’nogo sektora severa Urala (Magmatism and Geodynamics of the Paleocontinental Sector of the Northern Urals), Moscow: Nedra, 1997(a).

    Google Scholar 

  • Dushin, V.A., Correlation of the Mesozoic–Cenozoic magmatic complexes of the Northern Urals and adjacent territories, Geologiya i mineral’nye resursy Severo-Vostoka Rossii (Geology and Mineral Resources of Northeast Russia), Syktyvkar: Geoprint, 1997(b), Vol. 2, pp. 156–157.

    Google Scholar 

  • Dushin, V.A., Malyugin, A.A., Koz’min, V.S., et al., Some pecilarities in the distribution of noble metal mineralization within the Northern Urals, Izv. Vyssh Ucheb. Zaved., Gorn. Zh., 2013, no. 8, pp. 34–41.

    Google Scholar 

  • Faure, G., Principles of Isotope Geology (Wiley, New York, 1986).

    Google Scholar 

  • Galimov, E.M., Geokhimiya stabil’nykh izotopov ugleroda (Geochemistry of Carbon Stable Isotopes), Moscow: Nedra, 1968.

    Google Scholar 

  • Geochemistry of Hydrothermal Ore Deposits. 3rd Edition. Barnes, H.L., Ed., New York: Wiley, 1997.

  • Girfanov, M., Volchkov, A., Kryazhev, S., and Novikov, V., Gold-iron oxide bearing ore-magmatic system of the Auerbakh–Novogodnee volcano-plutonic belt, the Polar Urals, Abstracts of 33 rd Intern. Geol. Congr., Oslo, 2008, p. 1.

    Google Scholar 

  • Girfanov, M.M., Specifics of ore-metasomatic zoning as criterion of scale of copper porphyry mineralization, Tr. TsNIGRI, 1989, vol. 230, pp. 39–43.

    Google Scholar 

  • Girfanov, M.M., Andreev, A.V., Zelikson, B.S., Mansurov, R.Kh., Prospects of the evolution of the gold mineral-raw base of the Polar Urals (Yamal–Nenets Autonomous District), Prognoz, poiski, otsenka rudnykh i nerudnykh mestorozhdenii–dostizheniya i perspektivy: Mat. nauch.-prakt. konf. (Prediction, Prospecting, and Assessment of Ore and Non-Ore Deposits: Achievements and Prospects. Proceedings of Scientific-Practical Conference), Moscow: TsNIGRI, 2008, pp. 55–56.

    Google Scholar 

  • Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1: 1000000 (3-e pokol.). Seriya Ural’skaya. List Q-41, Vorkuta: Ob. zap. (State Geological Map of the Russian Federation. Scale 1: 1000000 (3rd Generation), Ural’skaya Series. Sheet Q-41, Vorkuta. Explanatory Note), SPb: Kart fabr. VSEGEI, 2007.

  • Grabezhev, A.I., The Yubileinoe porphyry cu–au deposit (South Urals, Russia): SHRIMP-II U–Pb zircon age and geochemical features of ore-bearing granitoids, Dokl. Earth Sci., 2014, vol. 454, pp. 72–75.

    Google Scholar 

  • Grabezhev, A.I., and Krasnobaev, A.A., U–Pb age and isotopic-geochemical characteristics of the Tomino–Bereznyaki ore field (South Urals), Litosfera, 2009, no. 2, pp. 14–27.

    Google Scholar 

  • Grabezhev, A.I., Sazonov, V.N., Murzin, V.V., et al., The Bereznyakovsk gold deposit (South Urals, Russia), Geol. Ore Deposits, 2000, vol. 42, no. 1, pp. 33–46.

    Google Scholar 

  • Graham, S., Pearson, N., Jackson, S., et al., Tracing Cu and Fe from source to porphyry: in situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu–Au deposit, Chem. Geol., 2004, vol. 207, nos. 3–4, pp. 147–169.

    Article  Google Scholar 

  • Grigor’ev, V.V. and Mart’yanova, E.V., Polyformation nature of metasomatites of the Novogodnee-Monto deposit and their relation with gold mineralization, Mater. IX nauch. konf. Chteniya A.N. Zavaritskogo (Proceedings of 9th Conference. Zavaritskii Reading), Yekaterinburg: IGiG UrO RAN, 2003, pp. 164–166.

    Google Scholar 

  • Hollister, V.F., Fort Knox porphyry gold deposit, Fairbanks, Alaska, Porphyry Copper, Molybdenum, and Gold Deposits, Volcanogenic Deposits (Massive Sulfides), and Deposits in Layered Rock. Volume 3. Case Histories of Mineral Discoveries, Hollister V.F., Ed., Soc. Mining, Metal., Explor., Inc., 1991, pp. 243–247.

    Google Scholar 

  • Hollister, V.F., On a proposed plutonic porphyry gold deposit model, Nat. Resour. Res., 1992, vol. 1, no. 4, pp. 293–302.

    Article  Google Scholar 

  • Hurwitz, S., Christiansen, L.B., and Hsieh, P.A., Hydrothermal fluid flow and deformation in large calderas: inferences from numerical simulations, J. Geophys. Res., 2007, vol. 112, no. B2. doi 10.1029/2006JB004689

    Google Scholar 

  • Kalyuzhny, V.A., Osnovy ucheniya o mineraloobrazuyushchikh flyuidakh (Principles of the Theory of Mineral-Forming Fluid), Kiev: Nauk. Dumka, 1982.

    Google Scholar 

  • Kenig, V.V. and Butakov, K.V., The Novogodnee-Monto and Petropavlovskoe gold deposits–a new gold district at the Polar Urals, Razvedka Okhrana Nedr, 2013, no. 11, pp. 22–24.

    Google Scholar 

  • Khubanov, V.B., Buyantuev, M.D., and Tsygankov, A.A., U-Pb dating of zircons from PZ3–Mz igneous complexes of Transbaikalia by sector-field mass spectrometry with laser sampling: technique and comparison with SHRIMP, Russ. Geol. Geophys., 2016, vol. 57, no. 1, pp. 190–205.

    Article  Google Scholar 

  • Konstantinov, M.M., Zolotorudnye mestorozhdeniya Rossii (Gold Deposits of Russia), Moscow: Akvarel’, 2010.

    Google Scholar 

  • Kotel’nikov, A.R., Suk, N.I., Kotel’nikova, Z.A., et al., Mineral geothermometers for low-temperature parageneses, Vestn. Otd. Nauk Zemle, 2012, vol. 4, pp. 1–4.

    Google Scholar 

  • Krivtsov, A.I., Geologicheskie osnovy prognozirovaniya i poiskov medno-porfirovykh mestorozhdenii (Geological Principles of Prediction and Prospecting of Copper Porphyry Deposits), Moscow: Nedra, 1983.

    Google Scholar 

  • Krivtsov, A.I., Zvezdov, V.S., Migachev, I.F., and Minina, O.V., Mednoporfirovye mestorozhdeniya. Seriya: Modeli mestorozhdenii blagorodnykh i tsvetnykh metallov (Copper Porphyry Deposits. Models of the Noble and Non-Ferous Metals Deposits) M.: TsNIGRI, 2001.

    Google Scholar 

  • Kuznetsov, N.B. and Romanyuk, T.V., Paleozoic evolution of the Polar Urals: Voikar basin with oceanic crust has existed no less than 65 Ma, Byull. Mosk. O-va Ispyt. Prir., 2014, vol. 89, no. 5, pp. 56–70.

    Google Scholar 

  • Laznicka, P., Giant Metallic Deposits, 2nd ed, Berlin, Heidelberg: Springer-Verlag, 2010.

    Book  Google Scholar 

  • Lohmeier, S., Lehmann, B., and Schneider, A., Geological and geochemical features of the Cerro Maricunga project in the Maricunga gold belt, northern Chile, Proc. 12th SGA meeting, Uppsala: Sweden, 2013, vol. 4, pp. 825–829.

    Google Scholar 

  • Lyuchkin, V.A., Tolokonnikov, A.V., Vodovatov, O.V., et al., Gold deposits of the Novogodnenskoe ore field, Polar Urals, Almazy i blagorodnye metally Timano-Ural’skogo regiona. Mat. nauchn. konf. (Diamonds and Noble Metals of the Timan–Ural Region. Proceedings of Conference), Syktyvkar, 2006, pp. 186–189.

    Google Scholar 

  • Mansurov, R.Kh., Geological structure of the Petropavlovskoe gold deposit, Polar Urals, Rudy Met., 2009, no. 5, pp. 70–74.

    Google Scholar 

  • Mansurov, R.Kh., Morphological model of the Petropavlovskoe gold deposit, Polar Urals, Vestn. RUDN., Ser. Inzh. Issled., 2011, no. 1, pp. 74–78.

    Google Scholar 

  • Mansurov, R.Kh., Geological-structural conditions of localization of the Petrolavlovskoe gold deposit, Polar Uras, Extended Abstract of Candidate (Geol.-Min) Dissertation, Moscow, 2013.

    Google Scholar 

  • McCoy, D., Newberry, R.J., Layer, P., et al., Plutonicrelated gold deposits of Interior Alaska, Econ. Geol. 1997, vol. 9, pp. 191–241.

    Google Scholar 

  • Metasomatizm i metasomaticheskie porody (Metasomatism and Metasomatic Rocks) Zharikov, V.A. and Rusinov, V.L, Ed., Moscow: Nauchnyi Mir, 1998.

  • Mukhamedov, A.I., et al., The timing and extent of the eruption of the siberian traps large igneous province: implications for the end-Permian environmental crisis, Mar. Geol., 2009, vol. 277, pp. 9–20.

    Google Scholar 

  • Murzin, V.V., Pokrovskii, P.V., and Moloshag, V.P., Mercury in native gold of the Urals and its important significance, Geol. Rud. Mestorozhd., 1981, vol. 23, no. 4, pp. 86–91.

    Google Scholar 

  • Okhotnikov, V.N., Geologiya rudnykh obrazovanii Polyarnogo Urala (Geology of Ore Complexes of the Polar urals), Leningrad.: Nauka, 1975.

    Google Scholar 

  • Ohmoto, H and Rye, R.O., Isotopes of sulfur and carbon, in The Geochemistry of Hydrothermal Ore Deposits, Barnes, H.L., Ed., New York: Wiley, 1979, pp. 509–561.

    Google Scholar 

  • Plotinskaya, O.Yu., Grabezhev, A.I., Tessalina, S., et al., Porphyry deposits of the Urals: geological framework and metallogeny, Ore Geol. Rev., 2017, vol. 85, pp. 153–173.

    Article  Google Scholar 

  • Popova, O.M., Mesozoic basite magmatism and metallogeny of the Polar Urals, Extended Abstract of Candidate (Geol.-Min.) Dissertation, Yekaterinburg, 2002. 24 s.

    Google Scholar 

  • Pryamonosov, A.P., Stepanov, A.E., Telegina, T.V., et al., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1: 200000 (izdanie vtoroe). Seriya Polyarno-Ural’skaya. List Q-41-XII. Ob"yasnitel’naya zapiska (State Geological Map of the Russian Federation. Scale 1: 200000 (2nd Edition), Salekhard: Komitet prirodnykh resursov po Yamalo-Nenetskomu avtonomnomu okrugu, 2001.

    Google Scholar 

  • Roedder, E., Fluid Inclusions. Rev. Mineral., vol. 12, Washington: Mineral. Soc. Am., 1984.

    Google Scholar 

  • Reichow, M.K., Pringle, M.S., Al’Mukhamedov, A.I., et al., The timing and extent of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis, Earth Planet. Sci. Lett., 2009, vol. 277, pp. 9–20.

    Article  Google Scholar 

  • Remizov, D.N., Ostrovoduzhnaya sistema Polyarnogo Urala (petrologiya i evolyutsiya glubinnykh zon) (Island-Arc System oft he Polar Urals: Petrology and Evolution of the Deep-Seated Zones), Yekaterinburg: UrO RAN, 2004.

    Google Scholar 

  • Safonov, Yu.G., Gold and gold-bearing deposits of the world: genesis and metallogenic potential, Geol. Ore Deposits, 2003, vol. 45, no. 4, pp. 265–278.

    Google Scholar 

  • Sazonov, V.N., Murzin, V.V., and Grigor’ev, N.A., Bereznyakovskoe zolotoporfirovoe mestorozhdenie (Yu. Ural) (Bereznyaki Gold Porphyry Deposit, South Urals), Yekaterinburg: IGiG UrO RAN, 1994.

    Google Scholar 

  • Shatov, V.V., Seltmann, R., and Moon, C.J., The Yubileinoe porphyry Au(-Cu) deposit, the South Urals: geology and alteration controls of mineralization, in Mineral Exploration and Sustainable Development, Proc. 7th SGA Meeting, Athens, Greece, Eliopoulos, D.G., et al., Eds., Rotterdam: Millpress, 2003, vol. 1, pp. 379–382.

    Google Scholar 

  • Shatov, V.V., Moon, C.J., and Seltmann, R., Discrimination between volcanic associated massive sulphide and porphyry mineralization using a combination of quantitative petrographic and rock geochemical data: a case study from the Yubileinoe Cu–Au deposit, western Kazakhstan, J. Geochem. Explor., 2014, vol. 147, pp. 26–36.

    Article  Google Scholar 

  • Shishkin, M.A., Aktualizatsiya legendy Polyarno-Ural’skoi serii listov Gosgeolkarty-200 (izdanie vtoroe) (Actualization of the Legend of the Polar–Ural heet Series, Gosgeolkarta-200, 2nd Edition), SPb: Kart. fabr. VSEGEI, 2009.

    Google Scholar 

  • Silaev, V.I., Bedrock gold potential of the Polar Urals, Rudy Met., 1998, no. 5, pp. 5–17.

    Google Scholar 

  • Silaev, V.I., Khazov, A.F., and Sokerin, M.Yu., Novogodnee-Monto gold deposit at the Polar Urals. Petrology and Mineralogy of the northern Urals and Timan, Tr. Inst. Geol. KomiNTs UrO RAN, 2003, vol. 113, pp. 159–172.

    Google Scholar 

  • Sillitoe, R.H., Gold metallogeny of Chile-an introduction, Econ. Geol., 1991, vol. 86, no. 6, pp. 1187–1205.

    Article  Google Scholar 

  • Sillitoe, R.H., Gold-rich porphyry deposits: descriptive and genetic models and their role in exploration and discovery, Rev. Econ. Geol., 2000, vol. 13, pp. 315–345.

    Google Scholar 

  • Sillitoe, R.H., Porphyry copper systems, Econ. Geol., 2010, vol. 105, pp. 3–41.

    Article  Google Scholar 

  • Sobolev, I.D., Udoratina, O.V., and Kobl, M., Age of diorites of the Kongor Complex (Polar Urals): U-Pb (single zircons, SHRIMP RG), Izotopnoe datirovanie geologicheskikh protsessov: novye rezul’taty, podkhody i perspektivy: Mater. VI Ros. konf. po izotopnoi geokhronologii (Isotope Dating of Geological Processes; new Results, Approaches, and Prospects. Proceedings of 4th Russian Conference on Isotope Geochronology), SPb: Sprinter, 2015, pp. 284–285.

    Google Scholar 

  • Sobolev, I.D., Latyshev, A.V., Vikent’ev, I.V., et al., Results of U-Pb (LA-ICP-MS) zircon dating and first paleomagnetic data on intrusive rock from the Petropavlovskoe and Novogodnee-Monto deposits, Polar Urals, in Metallogeniya drevnikh i sovremennykh okeanov-2017. Ot mineralogeneza k mestorozhdeniyam (Metallogeny of Ancient and Modern Oceans-2017. From Mineral Formation to Deposits), Miass: IMin UrO RAN, 2017 (a), pp. 210–213.

    Google Scholar 

  • Sobolev, I.D., Shadrin, A.N., Rastorguev, V.A., and Kozyreva, D.A., Early island-arc granitoids of the Shchuchinskaya Zone of the Polar Urals: U–Pb (SIMS) zircon isotope data, Moscow Univ. Geol. Bull., 2017 (c), vol. 72, no. 2, pp. 115–126.

    Article  Google Scholar 

  • Sobolev, I.D., Soboleva, A.A., Udoratina, O.V., et al., First results of U-Pb dating of detrital zircons from clastic rocks of the Polar Ural Paleozoic paleoisland arc, Byull. Mosk. Ova Ispyt. Prir., 2017 (b) (in press).

    Google Scholar 

  • Sobolev, I.D., Soboleva, A.A., Udoratina, O.V., and Varlamov, D.A., Triassic dike complex of the Maloural’skaya zone, Polar Urals, Korrelyatsiya altaid i uralid: magmatizm, metamorfizm, stratigrafiya, geokhronologiya, geodinamika i metallogenicheskoe prognozirovanie: Mater. Vtorogo Ros.-Kazakh. mezhd. nauch. Sov (Correlation of Altaides and Uralides: Magmatism, Metamorphism. Stratigraphy, Geochronology, Geodynamics, and Metallogenic Prediction. Proceedings of 2nd Ross.-Kazakh, International Conference), Novosibirsk, 2014, pp. 155–156.

    Google Scholar 

  • Soloviev, S.G., Kryazhev, S.G., and Dvurechenskaya, S.S., Geology, mineralization, stable isotope geochemistry, and fluid inclusion characteristics of the Novogodnee-Monto oxidized Au–(Cu) skarn and porphyry deposit, Polar Ural, Mineral. Deposita, 2013, vol. 48, pp. 603–625.

    Article  Google Scholar 

  • Storozhenko, A.A., Yubileinoe deposit, in Geologiya zolotorudnykh mestorozhdenii SSSR (Geology oGold Deposits of the USSR), 1984, vol. 1, pp. 180–186.

    Google Scholar 

  • Taylor, H.P., Oxygen and hydrogen isotope relations in hydrothermal mineral deposits, in Geochemistry of Hydrothermal Ore Deposits, New York: Wiley Intersci., 1982, pp. 236–277.

    Google Scholar 

  • Thiery, R., Kerkhof, A.M., and Dubessy, J., νx properties of CH4–CO2 and CO2–N2 fluid inclusions: modeling for t < 31°C and P < 400 bars, Eur. J. Mineral., 1994, no. 6, p. 753–771.

    Article  Google Scholar 

  • Trofimov, A.P., Funtikov, B.V., and Lyuchkin, V.A., Forecasting-geochemical assessment of the gold potential of the Novogodnenskoe promising area, Polar Urals, Rudy Met., 2006, no. 5, pp. 13–18.

    Google Scholar 

  • Udoratina, O.V. and Kuznetsov, N.B., Sobskii plagiogranite complex of the Polar Urals, Byull. Mosk O-va Ispyt. Prir., Otd. Geol., 2007, vol. 82, no. 3, pp. 49–59.

    Google Scholar 

  • Vikentiev, I.V., Abramova, V.D., Ivanova, Yu.N., et al., Trace elements in pyrite from the Petropavlovsk gold–porphyry deposit (Polar Urals): results of LA-ICP-MS analysis, Dokl. Earth Sci., 2016, vol. 470, pp. 976–980.

    Article  Google Scholar 

  • Vikentyev, I.V., Mansurov, R.Kh., and Trofimov, A.P., Gold–sulfide mineralization of the Polar Urals: conditions of formation and relation with granitoid magmatism, Tez. konf. “Granitoidy: usloviya formirovaniya i rudonosnost”. (Proceedings of Conference on Granitoids: Conditions of Formation and Ore Potential), Kiev: Inst. geokhimii, mineralogii i rudoobrazovaniya NANU, 2013, pp. 33–35.

    Google Scholar 

  • Viktorov, V.F., Shayakubov, T.Sh., Vologdin, I.F., and Shamansurov, A.Sh., Specificis of localization of mineralization in the Almalyk district, Geologiya medno-porfirovykh mestorozhdenii Kazakhstana i Srednei Azii (Geology of Copper–Porphyry Deposits of Kazakhstana and Middle Asia), Alma-Ata: KazIMS, 1971, pp. 146–151.

    Google Scholar 

  • Vila, T. and Sillitoe, R.H., Gold-rich porphyry systems in the Maricunga Belt, northern Chile, Econ. Geol., 1991, vol. 86, pp. 1238–1260.

    Article  Google Scholar 

  • Vila, T., Sillitoe, R.H., Betzhold, J., and Viteri, E., The porphyry gold deposit at Marte, northern Chile, Econ. Geol., 1991, vol. 86, pp. 1271–1286.

    Article  Google Scholar 

  • Vinogradov, V.I. and Bujakaite M.I., Strontium isotope composition in the rocks of the Voikar–Syn’ya ophiolite massif, Polar Urals, Evolyutsiya ofiolitovykh kompleksov (Evolution of Ophiolite Complexes), Sverdlovsk, 1981, vol. 1, pp. 59–70.

    Google Scholar 

  • Volchkov, A.G., Girfanov, M.M., and Novikov, V.P., Prospects of the evolution of the gold mineral-raw base of the Polar Urals (YaNAO), Problemy osvoeniya MSB tverdykh polezn. iskop. na Polyarnom Urale (Problems of the Development of the Mineral-Raw Base of Solid Mineral Resources at the Polar Urals), Salekhard: 2007, pp. 188–190.

    Google Scholar 

  • White, N.C. and Hedenquist, J.W., Epithermal gold deposits: styles, characteristics and exploration, SEG Newslett., 1995, vol. 23, pp. 8–13.

    Google Scholar 

  • Yazeva, R.G. and Bochkarev, V.V., Voikarskii vulkano-plutonicheskii poyas (Polyarnyi Ural) (Voikar Volcanoplutonic Belt, Polar Urals), Sverdlovsk: UNTs AN SSSR, 1984.

    Google Scholar 

  • Zhang, X. and Spry, P.G., Calculated stability of aqueous tellurium species, calaverite and hessite at elevated temperature, Econ. Geol., 1994, vol. 89, pp. 1152–1166.

    Article  Google Scholar 

  • Zoloev, K.K., Modern state of metallogeny of mobile belts: mechanism of formation, and specifics of mineral formation, Geologiya i metallogeniya Urala: Mater. nauchn. konf. (Geology and Metallogeny of the Urals. Proceedings of Conference), Yekaterinburg: UGSE, 1998, pp. 61–68.

    Google Scholar 

  • Zyleva, L.I., Konovalov, A.L, Kazak, A.P., et al., Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Masshtab 1: 1000000 (3-e pokol.). Ser. Zap.-Sibirskaya. List Q-42, Salekhard. Ob. Zap. (State Geologica Map of the Russian Federation on a Scale 1: 1000000 (3rd Generation). West Siberian Series. Sheet Q-42, Salekhard, Explanatory Note), SPb.: Kart. fabr. VSEGEI, 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Vikentyev.

Additional information

Original Russian Text © I.V. Vikentyev, R.Kh. Mansurov, Yu.N. Ivanova, E.E. Tyukova, I.D. Sobolev, V.D. Abramova, R.I. Vykhristenko, A.P. Trofimov, V.B. Khubanov, E.O. Groznova, S.S. Dvurechenskaya, S.G. Kryazhev, 2017, published in Geologiya Rudnykh Mestorozhdenii, 2017, Vol. 59, No. 6, pp. 501–541.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vikentyev, I.V., Mansurov, R.K., Ivanova, Y.N. et al. Porphyry-Style Petropavlovskoe Gold Deposit, the Polar Urals: Geological Position, Mineralogy, and Formation Conditions. Geol. Ore Deposits 59, 482–520 (2017). https://doi.org/10.1134/S1075701517060058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701517060058

Navigation