Skip to main content
Log in

Oxygen isotopic composition of quartz veins and host rocks at the Sukhoi Log deposit, Russia

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The relationships between the δ18O of quartz veins and veinlets pertaining to the main stage of gold mineralization at the Sukhoi Log deposit and metasomatically altered host slates are estimated. The oxygen isotopic composition of veined quartz and host slates is not uniform. The δ18O of quartz veins from the Western, Central, and Sukhoi Log areas of the deposit vary from +16 to + 18 ‰. The δ18O range of metasomatically altered slates in the Western and Sukhoi Log areas attains 6 ‰. The δ18O of quartz veins are always higher than those of host slates by 3–7‰. The regular difference in the δ18O between quartz veins and host slates indicates that the oxygen isotopic composition of the ore-bearing fluid forming the system of quartz veins and veinlets at the Sukhoi Log deposit could have formed as a result of interaction with silicate rocks, for instance, terrigenous slates enriched in δ18O. Such interaction, however, took place at deeper levels of the Sukhoi Log deposit. It is suggested that the fluid phase participating in the formation of the vein and veinlet system had initially high δ18O(>+10‰) due to interaction with the rocks enriched in δ18O at a low fluid/rock ratio. The oxygen isotope data indicate that the fluid participating in the formation of gold mineralization at the Sukhoi Log deposit was not in equilibrium with igneous rocks at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. S. Bortnikov, G. N. Gamyanin, O. V. Vikent’eva, V. Yu. Prokof’ev, V. A. Alpatov, and A. G. Bakharev, “Fluid Composition and Origin in the Hydrothermal System of the Nezhdaninsky Gold Deposit, Sakha (Yakutia), Russia,” Geol. Rudn. Mestorozhd. 49(2), 99–145 (2007) [Geol. Ore Deposits 49 (2), 87–128 (2007)].

    Google Scholar 

  2. N. S. Bortnikov, V. Yu. Prokof’ev, and K. V. Razdolina, “Genesis of the Charmitan Gold-Quartz Deposit, Uzbekistan,” Geol. Rudn. Mestorozhd. 38(3), 238–257 (1996) [Geol. Ore Deposits 38 (3), 208–226 (1996)].

    Google Scholar 

  3. N. S. Bortnikov, I. A. Bryzgalov, K. N. Krivitskaya, V. Yu. Prokof’ev, and O. V. Vikentieva, “The Maiskoe Multistage Stringer-Disseminated Gold-Sulfide Deposit, Chukotka, Russia: Mineralogy, Fluid Inclusions, Stable Isotopes (O, S), History, and Formation Conditions,” Geol. Rudn. Mestorozhd. 46(6), 475–509 (2004) [Geol. Ore Deposits 46 (6), 409–440 (2004)].

    Google Scholar 

  4. N. S. Bortnikov, G. N. Gamyanin, V. V. Alpatov,, V.B. Naumov, L. P. Nosik, and O. F. Mironova, “Mineralogy, Geochemistry and Origin of the Nezhdaninsky Gold Deposit (Sakha-Yakutia, Russia),” Geol. Rudn. Mestorozhd. 40(2), 137–156 (1998) [Geol. Ore Deposits 40 (2), 121–138 (1998)].

    Google Scholar 

  5. V. A. Buryak, Metamorphism and Ore Formation (Nedra, Moscow, 1982) [in Russian].

    Google Scholar 

  6. V. A. Buryak, I. S. Nemenman, K. V. Berdnikov, et al., “Fluid Regime and Source of Ore-Forming Solutions of Gold-Quartz Veins of the Allakh-Yun Zone,” Tikhookean. Geol. 9(3), 62–70 (1990).

    Google Scholar 

  7. Zh. Chang, R. R. Large, and V. Maslennikov, “Sulfur Isotope in Sediment-Hosted Orogenic Gold Deposits: Evidence for an Early Timing and a Seawater Sulfur Source,” Geology 36(12), 971–974 (2008).

    Article  Google Scholar 

  8. R. N. Clayton, J. R. O’Neil, and T. K. Mayeda, “Oxygen Isotope Exchange between Quartz and Water,” J. Geophys. Res. 77, 3057–3067 (1972).

    Article  Google Scholar 

  9. V. V. Distler, G. L. Mitrofanov, V. K. Nemerov, V. A. Kovalenker, A. V. Mokhov, L. K. Semeikina, and M. A. Yudovskaya, “Mode of Occurrence of the Platinum Group Elements and Their Origin in the Sukhoi Log Gold Deposit, Russia,” Geol. Rudn. Mestorozhd. 38(6), 467–484 (1996) [Geol. Ore Deposits 38 (6), 413–428 (1996)].

    Google Scholar 

  10. V. V. Distler, M. A. Yudovskaya, G. L. Mitrofanov, et al., “Geology, Composition, and Genesis of the Sukhoi Log Noble Metals Deposits, Russia,” Ore Geol. Rev. 24, 7–44 (2004).

    Article  Google Scholar 

  11. A. M. Gavrilov and S. G. Kryazhev, “Mineralogical and Geochemical Features of Ores at the Sukhoi Log Deposit,” Razved. Okhr. Nedr, No. 8, 3–16 (2008).

  12. L. Grancea, L. Bailly, J. Leroy, et al., “Fluid Evolution in the Baia Mare Epithermal Gold/Polymetallic District, Inner Carpathians, Romania,” Miner. Deposita 37, 630–647 (2002).

    Article  Google Scholar 

  13. Y. Jia and R. Kerrich, “Giant Quartz Vein Systems in Accretionary Orogenic Belts: The Evidence for a Metamorphic Fluid Origin from 15N and 13C Studies,” Earth Planet. Sci. Lett. 184, 211–224 (2000).

    Article  Google Scholar 

  14. M. Jingwen, Zh. Zuoheng, Y. Jianmin, and Zh. Zhang, “The Hanshan Gold Deposit in the Caledonian North Qilian Orogenic Belt, NW China,” Miner. Deposita 35, 63–71 (2000).

    Article  Google Scholar 

  15. I. A. Karpenko, I. F. Migachev, B. K. Mikhailov, and N. G. Petrash, “Current Geological and Economic Assessment of the Sukhoi Log Deposit,” Rudy Met., No. 2, 22–27 (2006).

  16. R. Kerrich and B. J. Fryer, “Lithophile-Element Systematics of Archean Greenstone Belt Au-Ag Vein Deposits: Implications for Source Processes,” Can. J. Earth Sci. 25, 945–953 (1988).

    Article  Google Scholar 

  17. I. V. Konovalov, “Temperature Zoning and Formation Condition of the Gold Mineral Assemblages,” in Metamorphic Ore Formation (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  18. N. P. Laverov, E. N. Lishnevsky, V. V. Distler, and A. A. Chernov, “Model of the Ore-Magmatic System of the Sukhoi Log Gold-Platinum Deposit, Eastern Siberia, Russia,” Dokl. Akad. Nauk 375(5), 652–656 (2000a) [Dokl. Earth Sci. 375A (9), 1362–1365 (2000a)].

    Google Scholar 

  19. N. P. Laverov, I. V. Chernyshev, A. V. Chugaev, E. D. Bairova, Yu. V. Golzman, V. V. Distler, and M. A. Yudovskaya, “Formation Stages of the Large-Scale Noble Metal Mineralization in the Sukhoi Log Deposit, East Siberia: Results of Isotopic Geochronological Study,” Dokl. Akad. Nauk 415(2), 1–6 (2007) [Dokl. Earth Sci. 415 (5), 810–814 (2007)].

    Google Scholar 

  20. N. P. Laverov, V. V. Distler, G. L. Mitrofanov, V. K. Nemerov, V. A. Kovalenker, A. V. Mokhov, L. K. Semeikina, and M. A. Yudovskaya, “Platinum and Other Native Metals in Ores of the Sukhoi Log Gold Deposit,” Dokl. Akad. Nauk 355(5), 664–668 (1997) [Dokl. Earth Sci. 355A (6), 904–907 (1997)].

    Google Scholar 

  21. N. P. Laverov, V. Yu. Prokof’ev, V. V. Distler, M. A. Yudovskaya, E. M. Spiridonov, V. I. Grebenshchikova, and N. L. Matel, “New Data on Ore Deposition Conditions and Composition of Ore-Forming Fluids in the Sukhoi Log Gold-Platinum Deposit,” Dokl. Akad. Nauk 371(1), 88–92 (2000b) [Dokl. Earth Sci. 3371) (2), 357–361 (1997)].

    Google Scholar 

  22. C. Lerouge, J. P. Milesi, and A. M. Fouillac, “The Paleoproterozoic Dorlin Gold Deposit, French Guiana: Genetic Constraints of the Stable Isotope Geochemistry,” Chem. Geol. 155, 131–149 (1999).

    Article  Google Scholar 

  23. J. Lu, P. K. Seccombe, and C. S. Eldridge, “SHRIMP S-Isotope Evidence for Fluid Mixing during Gold Mineralization in a Slate-Belt Gold Deposit (Hill End, NSW, Australia),” Chem. Geol. 127, 229–240 (1996).

    Article  Google Scholar 

  24. R. Mathur, J. Ruiz, S. Titley, et al., “Different Crystal Sources for Au-Rich and Au-Poor Ores of the Grasberg Cu-Au Porphyry Deposit,” Earth Planet. Sci. Lett. 183, 7–14 (2000).

    Article  Google Scholar 

  25. Y. Matsuhisa, J. R. Goldsmith, and R. N. Clayton, “Oxygen Isotopic Fractionation in the System Quartz-Albite-Anorthite-Water,” Geochim. Cosmochim. Acta 43, 1131–1140 (1979).

    Article  Google Scholar 

  26. S. Meffre, R. R. Large, R. Scott, et al., “Age and Pyrite Pb-Isotopic Composition of the Giant Sukhoi Log Sediment-Hosted Gold Deposit, Russia,” Geochim. Cosmochim. Acta (2008), doi: 10/1016/j.gca.2008/03/005.

  27. B. E. Nesbitt and K. Muchlenbachs, “Geology, Geochemistry and Genesis of Mesothermal Lode Gold Deposits of the Canadian Cordillera: Evidence for Ore Formation from Evolved Meteoric Water,” Econ. Geol. Monograph 6, 553–563 (1989).

    Google Scholar 

  28. P. Neumayr, J. R. Ridley, N. J. McNaughton, et al., “Timing of Gold Mineralization in the Mt. York District, Pilgangoora Greenstone Belt, and Implications for the Tectonic and Metamorphic Evolution of an Area Linking the Western and Eastern Pilbara Craton,” Prec. Res. 88, 249–265 (1998).

    Article  Google Scholar 

  29. T. Oberthur, G. Blenkinsop, U. F. Hein, et al., “Gold Mineralization in the Mazowe Area, Harare-Bindura-Shamva Greenstone Belt, Zimbabwe: II. Genetic Relationships Deduced from Mineralogical, Fluid Inclusion and Stable Isotope Studies, and the Sm-Nd Isotopic Composition of Scheelites,” Miner. Deposita 35, 138–156 (2000).

    Article  Google Scholar 

  30. C. S. Rombach and R. J. Newberry, “Shotgun Deposit: Granite Porphyry-Hosted Gold-Arsenic Mineralization in Southwestern Alaska, USA,” Miner. Deposita 36, 607–621 (2001).

    Article  Google Scholar 

  31. V. L. Rusinov, O. V. Rusinova, S. G. Kryazhev, Yu. V. Shchegol’kov, E. I. Alysheva, and S. E. Borisovsky, “Wall-Rock Metasomatism of Carbonaceous Terrigenous Rocks in the Lena Gold District,” Geol. Rudn. Mestorozhd. 50(1), 3–46 (2008) [Geol. Ore Deposits 50 (1), 1–40 (2008)].

    Google Scholar 

  32. R. R. Seal II, R. A. Ayuso, N. K. Foley, and S. H. B. Clark, “Sulfur and Lead Isotope Geochemistry of Hypogene Mineralization at the Barite Hill Gold Deposit, Carolina Slate Belt, Southeastern United States: A Window into and Through Regional Metamorphism,” Miner. Deposita 36, 137–148 (2001).

    Article  Google Scholar 

  33. V. I. Ustinov, V. A. Grinenko, and S. G. Kryazhev, “Physicochemical Conditions of Metamorphic Ore Formation in the Lena Gold District,” Vestn. ONZ Ross. Akad. Nauk 25(1), 1–3 (2007).

    Google Scholar 

  34. N. M. Vielreicher, J. R. Ridley, and D. I. Groves, “Marymia: An Archean, Amphibolite Facies-Hosted, Orogenic Lode-Gold Deposit Overprinted by Palaeoproterozoic Orogeny and Base-Metal Mineralization, Western Australia,” Miner. Deposita 37, 737–764 (2002).

    Article  Google Scholar 

  35. Y. F. Zheng, “Calculation of Oxygen Isotope Fractionation in Anhydrous Silicate Minerals,” Geochim. Cosmochim. Acta 57, 1079–1091 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Ikonnikova.

Additional information

Original Russian Text © T.A. Ikonnikova, E.O. Dubinina, M.R. Saroyan, A.V. Chugaev, 2009, published in Geologiya Rudnykh Mestorozhdenii, 2009, Vol. 51, No. 6, pp. 560–567.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikonnikova, T.A., Dubinina, E.O., Saroyan, M.R. et al. Oxygen isotopic composition of quartz veins and host rocks at the Sukhoi Log deposit, Russia. Geol. Ore Deposits 51, 505–512 (2009). https://doi.org/10.1134/S1075701509060075

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701509060075

Keywords

Navigation