Skip to main content
Log in

Redox potential of the Khibiny magmatic system and genesis of abiogenic hydrocarbons in alkaline plutons

  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

The temperature and redox conditions of the crystallization of rocks from the Khibiny alkaline pluton have been estimated based on an analysis of coexisting magnetite, ilmenite, titanite, and pyroxene. Under redox conditions characteristic of the Khibiny Complex, CO2 is contained in fluid and carbonate anions are contained in melt at high temperature; then graphite is released and an appreciable amount of hydrocarbons appear at a lower temperature as products of reaction of graphite with fluid. Abiogenic hydrocarbons can arise in igneous complexes owing to a processes distinct from Fischer-Tropsch synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Ballhaus, “Redox States of Lithospheric and Asthenospheric Upper Mantle,” Contrib. Mineral. Petrol. 114, 341–348 (1993).

    Article  Google Scholar 

  2. C. Ballhaus, R. F. Berry, and D. H. Green, “Oxygen Fugacity Controls in the Earth’s Upper Mantle,” Nature 348, 437–440 (1990).

    Article  Google Scholar 

  3. B. Beeskow, P. J. Treloar, A. H. Rankin, et al., “A Reassessment of Models for Hydrocarbon Generation in the Khibiny Nepheline Syenite Complex, Kola Peninsula, Russia,” Lithos 91, 1–18 (2006).

    Article  Google Scholar 

  4. B. E. Borutsky, Rock-Forming Minerals of High-Alkaline Complexes (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  5. A. F. Buddington and D. H. Lindsley, “Iron-Titanium Oxide Minerals and Synthetic Equivalents,” J. Petrol. 5, 310–357 (1964).

    Google Scholar 

  6. D. Canil, “Vanadium Partitioning and the Oxidation State of Archean Komatiite Magmas,” Nature 389, 842–845 (1997).

    Article  Google Scholar 

  7. D. Canil, “Vanadium Partitioning between Orthopyroxene, Spinel and Silicate Melt and the Redox States of Mantle Source Regions for Primary Magmas,” Geochim. Cosmochim. Acta 63, 557–572 (1999).

    Article  Google Scholar 

  8. D. Canil, “Vanadium in Peridotites, Mantle Redox and Tectonic Environments: Archean to Present,” Earth Planet. Sci. Lett. 195, 75–90 (2002).

    Article  Google Scholar 

  9. B. R. Frost and D. H. Lindsley, “Occurrence of Iron-Titanium Oxides in Igneous Rocks: Oxide Minerals: Petrologic and Magnetic Significance,” Rev. Mineral. 25, 433–467 (1991).

    Google Scholar 

  10. B. R. Frost, D. H. Lindsley, and D. J. Andersen, “Fe-Ti Oxide-Silicate Equilibriums: Assemblages with Fayalitic Olivine,” Am. Mineral. 73, 727–740 (1988).

    Google Scholar 

  11. M. S. Ghiorso and R. O. Sack, “Fe-Ti Oxide Geothermometry: Thermodynamic Formulation and the Estimation of Intensive Parameters in Silicic Magmas,” Contrib. Mineral. Petrol. 108, 485–510 (1991a).

    Article  Google Scholar 

  12. M. S. Ghiorso and R. O. Sack, “Thermochemistry of the Oxide Minerals: Oxide Minerals: Petrologic and Magnetic Significance,” Rev. Mineral. 25, 221–264 (1991b).

    Google Scholar 

  13. D. H. Green, T. J. Falloon, and W. R. Taylor, “Mantle-Derived Magmas: Roles of Variable Source Peridotite and Variable C-O-H Fluid Compositions,” in Magmatic Processes: Physicochemical Principles Geochem. Soc. Spec. Publ. 1, 139–154 (1987).

    Google Scholar 

  14. R. Halama, T. Vennemann, W. Siebel, and G. Markl, “The Gronnedal-Ika Carbonatite-Syenite Complex, South Greenland: Carbonatite Formation by Liquid Immiscibility,” J. Petrol. 46, 191–217 (2005).

    Article  Google Scholar 

  15. T. J. B. Holland, “Activities of Components in Omphacitic Solid Solutions. Application of Landau Theory to Mixtures,” Contrib. Mineral. Petrol. 105, 446–453 (1990).

    Article  Google Scholar 

  16. T. Holland and R. Powell, “A Compensated Redlich-Kwong (CORK) Equation for Volumes and Fugacities of CO2 and H2O in the Range 1 Bar to 50 Kbar and 100–1600°C,” Contrib. Mineral. Petrol. 109, 265–273 (1991).

    Article  Google Scholar 

  17. T. J. B. Holland and R. Powell, “An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest,” J. Metamorphic Geol. 16, 309–343 (1998).

    Article  Google Scholar 

  18. S. V. Ikorsky and N. A. Shugurova, “New Data on Age of Gases in Minerals from the Alkaline Rocks of the Khibiny Massif,” Geokhimiya 12(6), 943-947 (1974).

    Google Scholar 

  19. L. N. Kogarko, Genesis of Peralkaline Magmas (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  20. L. N. Kogarko, C. Kosztolanyi, and I. D. Ryabchikov, “Geochemistry of Reduced Fluids of Alkaline Magmas,” Geokhimiya 24(12), 1688–1695 (1986).

    Google Scholar 

  21. E. E. Kostyleva-Labuntsova, B. E. Borutsky, M. N. Sokolova, et al., Mineralogy of the Khibiny Massif. Minerals (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  22. U. Mann, M. Marks, and G. Markl, “Influence of Oxygen Fugacity on Mineral Compositions in Peralkaline Melts: The Katzenbuckel Volcano, Southwest Germany,” Lithos 91, 262–285 (2006).

    Article  Google Scholar 

  23. G. Markl, M. Marks, G. Schwinn, and H. Sommer, “Phase Equilibrium Constraints on Intensive Crystallization Parameters of the Ilímaussaq Complex, South Greenland,” J. Petrol. 42, 2231–2257 (2001).

    Article  Google Scholar 

  24. M. Marks and G. Markl, “Fractionation and Assimilation Processes in the Alkaline Augite Syenite Unit of the Ilímaussaq Intrusion, South Greenland, As Deduced from Phase Equilibriums,” J. Petrol. 42, 1947–1969 (2001).

    Article  Google Scholar 

  25. M. A. W. Marks, J. Schilling, I. M. Coulson, et al., “The Alkaline-Peralkaline Tamazeght Complex, High Atlas Mountains, Morocco: Mineral Chemistry and Petrological Constraints for Derivation from a Compositionally Heterogeneous Mantle Source,” J. Petrol. 49, 1097–1131 (2008).

    Article  Google Scholar 

  26. V. A. Nivin, “Gas Concentrations in Minerals with Reference to the Problem of the Genesis of Hydrocarbon Gases in Rocks of the Khibiny and Lovozero Massifs,” Geochem. Intern. 40, 883–898 (2002).

    Google Scholar 

  27. V. A. Nivin, P. J. Treloar, N. G. Konopleva, and S. V. Ikorsky, “A Review of the Occurrence, Form and Origin of C-Bearing Species in the Khibiny Alkaline Igneous Complex, Kola Peninsula, NW Russia,” Lithos 85, 93–112 (2005).

    Article  Google Scholar 

  28. H. S. C. O’Neill and V. J. Wall, “The Olivine-Spinel Oxygen Geobarometer, the Nickel Precipitation Curve and the Oxygen Fugacity of the Upper Mantle,” J. Petrol. 28, 1169–1192 (1987).

    Google Scholar 

  29. E. F. Osborn, “Role of Oxygen Pressure in the Crystallization and Differentiation of Basaltic Magma,” Am. J. Sci. 257, 609–647 (1959).

    Google Scholar 

  30. A. L. Perchuk and L. Ya. Aranovich, “Thermodynamic Model of the Solid Solution of the Jadeite-Diopside-Hedenbergite,” Geokhimiya 29 (4), 539-547 (1991).

  31. L. L. Perchuk, K. K. Podlessky, and L. Y. Aranovich, “Themodynamics of Some Framework Silicates and Their Equilibriums: Application to Geothermobarometry,” in Progress in Metamorphic and Magmatic Petrology (Univ. Press, Cambridge, 1991), pp. 131–164.

    Chapter  Google Scholar 

  32. I. A. Petersilie, “Carbonaceous Gases and Bitumen of Intrusive Massifs in the Central Part of the Kola Peninsula,” Dokl. Akad. Nauk SSSR 122(6), 1086–1089 (1958).

    Google Scholar 

  33. I. A. Petersilie and H. Sørensen, “Hydrocarbon Gases and Bituminous Substances in Rocks from the Ilímaussaq Alkaline Intrusion, South Greenland,” Lithos 3, 59–76 (1970).

    Article  Google Scholar 

  34. J. Potter, A. H. Rankin, and P. J. Treloar, “Abiogenic Fischer-Tropsch Synthesis of Hydrocarbons in Alkaline Igneous Rocks: Fluid Inclusion, Textural and Isotopic Evidence from the Lovozero Complex, N.W. Russia,” Lithos 75, 311–330 (2004).

    Article  Google Scholar 

  35. D. C. Presnall, “The Join Forsterite-Diopside-Iron Oxide and Its Bearing on the Crystallization of Basaltic and Ultramafic Magmas,” Am. J. Sci. 264, 753–809 (1966).

    Google Scholar 

  36. I. D. Ryabchikov and L. N. Kogarko, “Redox Equilibriums in Alkaline Lavas from Trindade Island, Brasil,” Intern. Geol. Rev. 36, 173–183 (1994).

    Google Scholar 

  37. I. D. Ryabchikov, Thermodynamic Analysis of the Behavior of Minor Elements during Crystallization of Silicate Melts (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  38. I. D. Ryabchikov, A. V. Ukhanov, and T. Ishii, “Redox Equilibriums in the Alkaline Rocks from Upper Mantle of the Yakutian Kimberlite Province,” Geokhimiya 23(5), 1110–1123 (1985).

    Google Scholar 

  39. I. D. Ryabchikov, I. P. Solovova, L. N. Kogarko, G. P. Brey, Th. Ntaflos, and S. G. Simakin, “Thermodynamic Parameters of Generation of Meimechites and Alkaline Picrites in the Maimecha-Kotui Province: Evidence from Melt Inclusions,” Geokhimiya 40(11), 1139–1150 (2002) [Geochem. Int. 40 (11), 1031–1041 (2002)].

    Google Scholar 

  40. R. O. Sack and M. S. Ghiorso, “An Internally Consistent Model for the Thermodynamic Properties of Fe-Mg-Titanomagnetite-Aluminate Spinels,” Contrib. Mineral. Petrol. 106, 474–505 (1991).

    Article  Google Scholar 

  41. S. Salvi and A. Williams-Jones, “Alteration, HFSE Mineralization, and Hydrocarbon Formation in Peralkaline Igneous Systems: Insights from the Strange Lake Pluton, Canada,” Lithos 91, 19–34 (2006).

    Article  Google Scholar 

  42. K. I. Shmulovich, Carbon Dioxide in High-Temperature Mineral Formation (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  43. A. V. Sobolev, V. S. Kamenetsky, and N. N. Kononkova, “New Data on Petrology of the Siberian Meimechites,” Geokhimiya 29(8), 1084–1095 (1991).

    Google Scholar 

  44. V. L. Vinograd, “Thermodynamics of Mixing and Ordering in the Diopside-Jadeite System: I. A CVM Model,” Mineral. Magazine 66, 513–536 (2002).

    Article  Google Scholar 

  45. D. R. Wones, “Significance of the Assemblage Titanite + Magnetite + Quartz in Granitic Rocks,” Am. Mineral. 74, 744–749 (1989).

    Google Scholar 

  46. B. J. Wood, L. T. Bryndzya, and K. E. Johnson, “Mantle Oxidation State and Its Relationship to Tectonic Environment and Fluid Speciation,” Science 248, 337–345 (1990).

    Article  Google Scholar 

  47. D. Xirouchakis and D. H. Lindsley, “Equilibriums among Titanite, Hedenbergite, Fayalite, Quartz, Ilmenite, and Magnetite: Experiments and Internally Consistent Thermodynamic Data for Titanite,” Am. Mineral. 83, 712–725 (1998).

    Google Scholar 

  48. D. Xirouchakis, D. H. Lindsley, and D. J. Andersen, “Assemblages with Titanite (CaTiOSiO4), Ca-Mg-Fe Olivine and Pyroxenes, Fe-Mg-Ti Oxides, and Quartz: Part I. Theory,” Am. Mineral. 86, 247–253 (2001a).

    Google Scholar 

  49. D. Xirouchakis, D. H. Lindsley, and B. R. Frost, “Assemblages with Titanite (CaTiOSiO4), Ca-Mg-Fe Olivine and Pyroxenes, Fe-Mg-Ti Oxides, and Quartz: Part II. Application,” Am. Mineral. 86, 254–264 (2001b).

    Google Scholar 

  50. C. Zhang, Z. Duan, and Z. Zhang, “Molecular Dynamics Simulation of the CH4 and CH4-H2O Systems up to 10 GPa and 2573 K,” Geochim. Cosmochim. Acta 71, 2036–2055 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Ryabchikov.

Additional information

Original Russian Text © I.D. Ryabchikov, L.N. Kogarko, 2009, published in Geologiya Rudnykh Mestorozhdenii, 2009, Vol. 51, No. 6, pp. 475–491.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryabchikov, I.D., Kogarko, L.N. Redox potential of the Khibiny magmatic system and genesis of abiogenic hydrocarbons in alkaline plutons. Geol. Ore Deposits 51, 425–440 (2009). https://doi.org/10.1134/S1075701509060014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701509060014

Keywords

Navigation