Skip to main content
Log in

Discrete and functional-geometric methods of infrared spectroscopy of minerals using reference samples

  • Methods of Research of Minerals, Rocks, and Ores
  • Published:
Geology of Ore Deposits Aims and scope Submit manuscript

Abstract

Different methods of infrared spectroscopy applied to the analysis of mineral phases using spectra of reference samples are compared. Traditionally (discretely), the IR spectrum is processed as pairs of numbers characterizing frequencies and intensities of separate bands. The major advantage of such an approach is the opportunity to visualize fine crystallochemical features within groups of related minerals. An alternative technique is based on functional-geometric analysis, dealing with the spectral curve as a whole. This approach is based on the minimization of root-mean square deviations and opens up wide possibilities for the identification of minerals by their IR spectra. The crux of the functional-geometric method is the determination of a linear combination of standard spectra with nonnegative coefficients that ensures the best (in terms of integral functional comparison) approximation of the analyzed spectral curve. As a rule, the spectra of minerals with the closest crystallochemical relationships with the examined sample make the greatest contribution to this resolution. Numerous examples of application of the discrete and functional-geometric methods are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. V. Chukanov and V. A. Dubovitsky, “New Aspects of Using of Infra-Red Spectroscopy in Mineralogical Studies,” in Proceedings of Annual Session of Moscow Division Mineralogical Society, Moscow, November 4–5, 2003 (IGEM RAS, Moscow, 2003), pp. 129–130 [in Russian].

    Google Scholar 

  2. N. V. Chukanov and St. Moeckel, “Atencioite, Ca2Fe2+Mg2Fe 3+2 Be4(PO4)6(OH)4 · 6H2O, a New Mineral,“ in Proceedings of the III Intern. Symp. on Mineral Diversity—Research and Preservation (Sofia, 2005), p. 16.

  3. N. V. Chukanov, V. A. Dubovitsky, and S. A. Vozchikova, “Expert System for Identification of Mineral Mixtures by IR Spectroscopy,” in Proceedings of Annual Session of Moscow Division of Mineralogical Society on Role of Mineralogical Studies in Solution of Environmental Problems, May 28–30, 2002 (VIMS, Moscow, 2002), pp. 187–189 [in Russian].

    Google Scholar 

  4. N. V. Chukanov and I. V. Pekov, “Heterosilicates with Tetrahedral-Octahedral Frameworks: Mineralogical and Crystal-Chemical Aspects,” in Reviews Mineral. Geochem., Vol. 57: Micro and Mesoporous Mineral Phases, Ed. by G. Fettaris and S. Merlino (2005), pp. 105–143.

  5. N. V. Chukanov, M. M. Moiseev, I. V. Pekov, et al., “Nabalamprofillite Ba(Na,Ba){Na3Ti[Ti2O2Si4O14](OH,F)2}, New Layered Titanosilicate of Lamprofillie Group from Inagli and Kovdor Alkaline-Ultramafic Plutons, Russia,“ Zap. Vseross. Mineral. O-va 133(1), 59–72 (2004).

    Google Scholar 

  6. N. V. Chukanov, M. M. Moiseev, R. K. Rastsvetaeva, et al., “Golyshevite (Na,Sa)10Ca9(Fe3+,Fe2+)2Zr3NbSi25O72(CO3)(OH)3 · H2O and Mogovidite N9(Ca,Na)6Ca6(Fe3+,Fe2+)2Zr3S25O72(CO3)(OH,H2O)4, New Minerals of Eudialite Group from High-Ca Peralkaline Pegmatites of the Kovdor Pluton, Kola Peninsula,“ Zap. Vseross. Mineral. O-va 134(6), 36–47 (2005).

    Google Scholar 

  7. N. V. Chukanov, I. V. Pekov, A. E. Zadov, et al., “Ikranite (Na,H3O)15(Ca,Mn,REE)6 Fe 3+2 Zr3(□,Zr)(□,Si)Si24O66(O,OH)6Cl · nH2O and Raslakite Na15Ca3Fe3(Na,Zr)3Zr3(Si,Nb)(Si25O73)(OH,H2O3(Cl,OH)), New Minerals Species of Eudialite Group from Lovozero Pluton,” (Zap. Vseross. Mineral. O-va 132(5), 25–33 (2003a) [in Russian].

    Google Scholar 

  8. N. V. Chukanov, I. V. Pekov, R. K. Rastsvetaeva, et al., “Clinobarylite BaBe2Si2O7, New Mineral from Khibiny Pluton, Kola Peninsula,” Zap. Vseross. Mineral. O-va 132(1), 29–37 (2003b).

    Google Scholar 

  9. N. V. Chukanov, R. K. Rastsvetaeva, St. Moeckel, et al., “New Mineral Atencioite Ca2Fe2+□Mg2Fe 2+2 Be4(PO4)6(OH)4 · 6H2O and Its Relationships with Other Minerals of Rosherite Group,” in New Data on Minerals (2006) (in press).

  10. V. A. Dubovitsky and V. I. Irzhak, “Stable Determination of Relaxon Spectrum from the Data on Mechanical Relaxation of Polymers,” Vysokomol. Soed., Series B 47(1), 121–143 (2005).

    Google Scholar 

  11. V. A. Dubovitsky and I. A. Milyutina, Histogram Method for Digital Analysis of Multicomponent Kinetics of DNK Reassociation Preprint (Inst. Chem. Physics, Chernogolovka, 1985).

    Google Scholar 

  12. V. A. Dubovitsky, N. V. Chukanov, and S. A. Vozchikova, “Complex Identification of Inorganic Compounds from a Curve of IRR Absorption,” Khim. Fiz. 23(5), 90–100 (2004).

    Google Scholar 

  13. L. Fanfani, P. Zanazzi, and A. R. Zanzari, “The Crystal Structure of Triclinic Roscherite,” Tschermaks Mineral. Petrogr. Mitt. 24, 169–178 (1977).

    Article  Google Scholar 

  14. A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques (Wiley, New York, 1968; Mir, Moscow, 1972).

    Google Scholar 

  15. C.L. Lawson and R. J. Hanson, Solving Least Square Problems (Prentoce-Hall, Englewood Cliffs, 1974; Nauka, Moscow, 1986).

    Google Scholar 

  16. Modern Vibrational Spectroscopy of Inorganic Compounds, Ed. by E. N. Yurchenko (Nauka, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  17. I. V. Pekov, N. V. Chukanov, G. Ferraris, et al., “Shirokshinite, K(NaMg2)Si4O10F2, a New Mica with Octahedral Na from Khibiny Massif, Kola Peninsula: Descriptive Data and Structural Disorder,“ Eur. J. Mineral. 15, 447–454 (2003).

    Article  Google Scholar 

  18. I. V. Pekov, N. V. Chukanov, P. Tarasoff, et al., “Gjerdingenite-Na and Gjerdingenite-Ca: Two New Minerals of the Labuntsovite Group,” Can. Mineral. 45, 529–539 (2007).

    Article  Google Scholar 

  19. R. W. Pohl, Optik und Atomphysik (Springer, Berlin, 1963; Mir, Moscow, 1966).

    Google Scholar 

  20. R. K. Rastsvetaeva, A. V. Barinova, N. V. Chukanov, and A. Petrashko, “Crystal Structure of High-Magnesium Triclinic Analogue of Greifensteinite,” Dokl. Akad. Nauk 398(4), 492–497 (2004).

    Google Scholar 

  21. G. A. Sidorenko, N. V. Chukanov, N. I. Chistyakova, et al., “Uramarsite (NH4,H3O)2(UO2)2(AsO4,PO4)2 · 6H2O, New Mineral of Metaotenite Group,” Dokl. Akad. Nauk (in press).

  22. Vibrational Spectroscopy: Modern Trends, Ed. by A. J. Barnes and W.J. Orville-Thomas (Elsevier, Amsterdam, 1977; Mir, Moscow, 1981) [in Russian].

    Google Scholar 

  23. S. A. Vozchikova, V. A. Dubovitsky, and N. V. Chukanov, “Complex Identification of Chemical Compounds from Curve of IR Absorption,” in Proceedings of the XVII Symposium on Modern Chemical Physics (Tuapse, 2005), pp. 152–153.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Chukanov.

Additional information

Original Russian Text © N.V. Chukanov, V.A. Dubovitsky, S.A. Vozchikova, S.M. Orlova, 2008, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2008, Pt CXXXVII, No. 1, pp. 77–93.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chukanov, N.V., Dubovitsky, V.A., Vozchikova, S.A. et al. Discrete and functional-geometric methods of infrared spectroscopy of minerals using reference samples. Geol. Ore Deposits 50, 815–826 (2008). https://doi.org/10.1134/S1075701508080205

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1075701508080205

Keywords

Navigation