Skip to main content
Log in

Reactivity of Inorganic α-Nucleophiles in Acyl Transfer in Aqueous and Micellar Media: IV. Peroxyhydrolysis of Acyl Derivatives in Organized Microheterogeneous Systems1

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The micellar effects in the perhydrolysis and base-catalyzed hydrolysis of 4-nitrophenyl esters of phosphoric, phosphonic, and toluenesulfonic acids in organized microheterogeneous systems based on dicationic [Gemini surfactant AlkIm+–(CH2)3–Im+Alk∙2Br, where Alk = C12H25 or C14H29 (GS)] and monocationic (AlkIm+CH3∙Br, where Alk=C12H25 or C14H29) surfactants have been analyzed. The reagent concentrations have been found to be the main factor responsible for micellar catalysis. The hydroperoxide α-effect defined as the ratio of the second-order rate constants of perhydrolysis and base-catalyzed hydrolysis is preserved and, depending on the nature of the surfactant and the substrate, may reach ~ 100.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Belousova, I.A., Zubareva, T.M., Gaidash, T.S., Razumova, N.G., Turovskaya, M.K., Panchenko, B.V., Prokop’eva, T.M., and Mikhailov, V.A., Russ. J. Org. Chem., 2021, vol. 57, p. 338. https://doi.org/10.31857/S0514749221030034

    Article  CAS  Google Scholar 

  2. Samiey, B., Cheng, C.-H., and Wu, J., J. Chem., 2014, p. 1. https://doi.org/10.1155/2014/908476

  3. Bedford, C.T., Reactions of Carboxylic, Phosphoric, and Sulfonic Acids and their Derivatives. In: Organic Reaction Mechanisms 2014, Knipe, A.C., Ed., Wiley, 2018, p. 87. https://doi.org/10.1002/9781118941829.ch2

  4. Kim, K., Tsay, O.G., Atwood, D.A., and Churchill, D.G., Chem. Rev., 2011, vol. 111, p. 5345. https://doi.org/10.1021/cr100193y

    Article  CAS  PubMed  Google Scholar 

  5. Duirk, S.E., Desetto, L.M., and Davis, G.M., Environ. Sci. Technol., 2009, vol. 43, p. 2335. https://doi.org/10.1021/es802868y

    Article  CAS  PubMed  Google Scholar 

  6. Deraedt, C. and Didier, A., Coord. Chem. Rev., 2016, vol. 324, p. 106. https://doi.org/10.1016/j.ccr.2016.07.007

    Article  CAS  Google Scholar 

  7. Pavez, P., Oliva, G., and Millán, D., ACS Sustain. Chem. Eng., 2016, vol. 4, p. 7023. https://doi.org/10.1021/acssuschemeng.6b01923

    Article  CAS  Google Scholar 

  8. Simanenko, Yu.S., Popov, A.F., Prokop’eva, T.M., Karpichev, E.A., Savelova, V.A., Suprun, I.P., and Bunton, C.A., Russ. J. Org. Chem., 2002, vol. 38, p. 1286. https://doi.org/10.1023/A:1021699628721

    Article  CAS  Google Scholar 

  9. Wagner, G.W., Sorrick, D.C., Procell, L.R., Brickhouse, M.D., Mcvey, I.F., and Schwartz, L.I., Langmuir, 2007, vol. 23, p. 1178. https://doi.org/10.1021/la062708i

    Article  CAS  PubMed  Google Scholar 

  10. Yang, Y.-Ch., Acc. Chem. Res., 1999, vol. 32, p. 109. https://doi.org/10.1021/ar970154s

    Article  CAS  Google Scholar 

  11. Talmage, S.S., Watson, A.P., Hauschild, V., Munro, N.B., and King, J., Curr. Org. Chem., 2007, vol. 11, p. 285. https://doi.org/10.2174/138527207779940892

    Article  CAS  Google Scholar 

  12. Cassagne, T., Cristau, H.-J., Delmas, G., Desgranges, M., Lion, C., Magnaud, G., Torreilles, É., and Virieux, D., Heteroat. Chem., 2001, vol. 12, p. 485. https://doi.org/10.1002/hc.1074

    Article  CAS  Google Scholar 

  13. Wagner, G.W. and Yang, Y.-Ch., Ind. Eng. Chem. Res., 2002, vol. 41, p. 1925. https://doi.org/10.1021/ie010732f

    Article  CAS  Google Scholar 

  14. Yao, H. and Richardson, D.E., J. Am. Chem. Soc., 2003, vol. 125, p. 6211. https://doi.org/10.1021/ja0274756

    Article  CAS  PubMed  Google Scholar 

  15. Bunton, C.A. and Gillitt, N.D., J. Phys. Org. Chem., 2002, vol. 15, p. 29. https://doi.org/10.1002/poc.442

    Article  CAS  Google Scholar 

  16. Zubareva, T.M., Anikeev, A.V., Karpichev, E.A., Red’ko, A.N., Prokop’eva, T.M., and Popov, A.F., Theor. Exp. Chem., 2011, vol. 47, p. 377. https://doi.org/10.1007/s11237-012-9230-5

    Article  CAS  Google Scholar 

  17. Pisárčik, M., Polakovičová, M., Markuliak, M., Lukáč, M., and Devínsky, F., Molecules, 2019, vol. 24, p. 1. https://doi.org/10.3390/molecules24081481

    Article  CAS  Google Scholar 

  18. Zana, R., Adv. Coll. Interface Sci., 2002, vol. 97, p. 205. https://doi.org/10.1016/s0001-8686(01)00069-0

    Article  CAS  Google Scholar 

  19. Kapitanov, I.V., Prokop’eva, T.M., Sadovskii, Yu.S., Solomoichenko, T.N., Turovskaya, M.K., Piskunova, Zh.P., Razumova, N.G., and Popov, A.F., Ukr. Khim. Zh., 2014, vol. 80, p. 30.

    CAS  Google Scholar 

  20. Berezin, I.V., Martinek, K., and Yatsimirskii, A.K., Russ. Chem. Rev., 1973, vol. 42, p. 787. https://doi.org/10.1070/rc1973v042n10abeh002744

    Article  Google Scholar 

  21. Bunton, C.A., Adv. Coll. Interface Sci., 2006, vol. 123–126, p. 333. https://doi.org/10.1016/j.cis.2006.05.008

    Article  CAS  Google Scholar 

  22. Bhattacharya, S. and Kumar, V.P., J. Org. Chem., 2004, vol. 69, p. 559. https://doi.org/10.1021/jo034745+

    Article  CAS  PubMed  Google Scholar 

  23. Wetting, S.D. and Verrall, R.E., J. Coll. Interface Sci., 2001, vol. 235, p. 310. https://doi.org/10.1006/jcis.2000.7348

    Article  CAS  Google Scholar 

  24. Wetting, S.D., Novak, P., and Verrall, R.E., Langmuir, 2002, vol. 18, p. 5354. https://doi.org/10.1021/la011782s

    Article  CAS  Google Scholar 

  25. Prokop’eva, T.M., Belousova, I.A., Turovskaya, M.K., Razumova, N.G., Panchenko, B.V., and Mikhailov, V.A., Russ. J. Org. Chem., 2018, vol. 54, p. 1630. https://doi.org/10.1134/S1070428018110027

    Article  Google Scholar 

  26. Kapitanov, I.V., Belousova, I.A., Shumeiko, A.E., Kostrikin, M.L., Prokop’eva, T.M., and Popov, A.F., Russ. J. Org. Chem., 2014, vol. 50, p. 694. https://doi.org/10.1134/S1070428014050133

    Article  CAS  Google Scholar 

  27. Prokop’eva, T.M., Mirgorodskaya, A.B., Belousova, I.A., Zubareva, T.M., Turovskaya, M.K., Panchenko, B.V., Razumova, N.G., Gaidash, T.S., and Mikhailov, V.A., Chem. Safety Sci., 2021, vol. 5, p. 8. https://doi.org/10.25514/CHS.2021.2.20001

    Article  Google Scholar 

  28. Zubareva, T.M., Belousova, I.A., Prokop’eva, T.M., Gaidash, T.S., Razumova, N.G., Panchenko, B.V., and Mikhailov, V.A., Russ. J. Org. Chem., 2020, vol. 56, p. 53. https://doi.org/10.1134/S1070428020010091

    Article  CAS  Google Scholar 

  29. Pang, Q.-H., Zang, R.-R., Kang, G.-L., Li, J.-M., Hu, W., Meng, X.-G., and Zeng, X.-C., J. Dispers. Sci. Technol., 2006, vol. 27, p. 671. https://doi.org/10.1080/01932690600660541

    Article  CAS  Google Scholar 

  30. Leclercq, L., Douyère, G., and Nardello-Rataj, V., Catalysts, 2019, vol. 9, p. 163. https://doi.org/10.3390/catal9020163

    Article  CAS  Google Scholar 

  31. DePuy, C.H., Della, E.W., Filley, J., Grabowski, J.J., and Bierbaum, V.M., J. Am. Chem. Soc., 1983, vol. 105, p. 2481. https://doi.org/10.1021/ja00346a066

    Article  CAS  Google Scholar 

  32. Voloshina, A.D., Gumerova, S.K., Sapunova, A.S., Kulik, N.V., Mirgorodskaya, A.B., Kotenko, A.A., Prokopyeva, T.M., Mikhailov, V.A., Zakharova, L.Ya., and Sinyashin, O.G., Biochim. Biophys. Acta, Gen. Subjs., 2020, vol. 1864, p. 129728. https://doi.org/10.1016/j.bbagen.2020.129728

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kotenko.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

For communication III, see [1].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turovskaya, M.K., Belousova, I.A., Razumova, N.G. et al. Reactivity of Inorganic α-Nucleophiles in Acyl Transfer in Aqueous and Micellar Media: IV. Peroxyhydrolysis of Acyl Derivatives in Organized Microheterogeneous Systems1. Russ J Org Chem 60, 252–258 (2024). https://doi.org/10.1134/S1070428024020106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428024020106

Keywords:

Navigation