Skip to main content
Log in

Dynamic Structure of Organic Compounds in Solution by Dynamic NMR Measurements and Quantum Molecular Dynamics Calculations: IV. Benzamide

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

To study the structure and dynamics of nitrogen-containing compounds, NMR parameters with directly involved nitrogen can provide valuable structure information. However, this information can only be obtained using 15N-enriched compounds due to low natural abundance of 15N and extremely short relaxation time of 14N. In the synthesis of benzamides from their 15N-ammonium salts, 15N-enriched benzamides are often used as intermediates. In the present work, we studied the dynamic structure of benzamide, which is controlled by two independent factors: hindered internal rotation of the NH2 group around the C(O)–N bond and of the amide group as a whole relative to the benzene ring. Deeper knowledge of the mechanism and parameters of these processes in amides is important for meaningful interpretation and prediction of the biological activity of aromatic amides in living systems and the strength and conformation of their supramolecular complexes with lanthanide and actinide ions. A double enriched [2H5,15N]benzamide was synthesized to avoid undesirable superposition of the strong aromatic multiplet on the amide signals in the 1H NMR spectra. The 1H NMR spectrum of this compound contained only strong signals of amide protons, which allowed accurate determination of the quantitative characteristics of the studied dynamic processes. The obtained experimental data are in good agreement with the results of quantum molecular dynamics simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Scheme
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Ganina, T.A. and Chertkov, V.A., Russ. J. Org. Chem., 2019, vol. 55, p. 354. https://doi.org/10.1134/S107042801903014X

    Article  CAS  Google Scholar 

  2. Leskowitz, G.M., Ghaderi, N., Olsen, R.A., Pederson, K., Hatcher, M.E., and Mueller, L.J., J. Phys. Chem. A, 2005, vol. 109, p. 1152. https://doi.org/10.1021/jp0460689

    Article  CAS  PubMed  Google Scholar 

  3. Koz’minykh, V.O., Pharm. Chem. J., 2006, vol. 40, p. 8. https://doi.org/10.1007/s11094-006-0048-0

    Article  CAS  Google Scholar 

  4. Wong, M.W. and Wiberg, K.B., J. Phys. Chem., 1992, vol. 96, p. 668. https://doi.org/10.1021/jp304300n

    Article  CAS  Google Scholar 

  5. Ustynyuk, Yu.A., Zhokhova, N.I., Gloriozov, I.P., Matveev, P.I., Evsiunina, M.V., Lemport, P.S., Pozdeev, A.S., Petrov, V.G., Yatsenko, A.V., Tafeenko, V.A., and Nenajdenko, V.G., Int. J. Mol. Sci., 2022, vol. 23, p. 15538. https://doi.org/10.3390/ijms232415538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Palyulin, V.A., Emets, S.V., Chertkov, V.A., Kasper, C., and Schneider, H-Y., Eur. J. Org. Chem., 1999, p. 3479.

  7. Stewart, W.E. and Siddall, T.H. III., Chem. Rev., 1970, vol. 70, p. 517. https://doi.org/10.1021/cr60267a001

    Article  CAS  Google Scholar 

  8. Coursindel, T., Farran, D., Martinez, J., and Dewynter, G., Tetrahedron Lett., 2008, vol. 49, p. 906. https://doi.org/10.1016/j.tetlet.2007.11.159

    Article  CAS  Google Scholar 

  9. Shestakova, T.S., Shenkarev, Z.O., Deev, S.L., Chupakhin, O.N., Khalymbadzha, I.A., Rusinov, V.L., and Arseniev, A.S., J. Org. Chem., 2013, vol. 78, p. 6975. https://doi.org/10.1021/jo4008207

    Article  CAS  PubMed  Google Scholar 

  10. Sandström, J., Dynamic NMR Spectroscopy, New York: Academic Press, 1982.

  11. Bagchi, B. and Jana, B., Chem. Soc. Rev., 2010, vol. 39, p. 1936. https://doi.org/10.1039/b902048a

    Article  CAS  PubMed  Google Scholar 

  12. Lopez, J.C., Alonso, J.L., Pena, I., and Vaquero, V., Phys. Chem. Chem. Phys., 2010, vol. 12, p. 14128. https://doi.org/10.1039/c0cp00665c

    Article  CAS  PubMed  Google Scholar 

  13. Kubica, D., Molchanov, S., and Gryff-Keller, A., J. Phys. Chem. A, 2017, vol. 121, p. 1842. https://doi.org/10.1021/acs.jpca.7b00144

    Article  CAS  Google Scholar 

  14. Perrin, C.L. and Nielson, J.B., Annu. Rev. Phys. Chem., 1997, vol. 48, p. 511. https://doi.org/10.1146/annurev.physchem.48.1.511

    Article  CAS  PubMed  Google Scholar 

  15. Kamorin, D.M., Rumyantsev, M., Kazantsev, O.A., Sivokhin, A.P., and Kamorina, S.I., J. Appl. Polym. SCI, 2017, vol. 134, p. 44412. https://doi.org/10.1002/app.44412

    Article  CAS  Google Scholar 

  16. Aitken, R.A., Smith, M.H., and Wilson, H.S., J. Mol. Struct., 2016, vol. 1113, p. 171. https://doi.org/10.1016/j.molstruc.2016.02.030

    Article  CAS  Google Scholar 

  17. Loening, M.N., Keeler, J., and Morris, G.A., J. Magn. Reson., 2001, vol. 153, p. 103. https://doi.org/10.1006/jmre.2001.2423

    Article  CAS  PubMed  Google Scholar 

  18. Evans, R., A. Hernandez-Cid, A., Poggetto, G.D., Vesty, A., Haiber, S., Morris, G.A., and Nilsson, M., RSC Adv., 2017, vol. 7, p. 449. https://doi.org/10.1039/c6ra26144b

    Article  CAS  Google Scholar 

  19. Shimanski, S. and Bernatowicz, P., Clasical and Quantum Molecular Dynamics in NMR Spectra, Cham: Springer, 2018. https://doi.org/10.1007/978-3-319-90781-9

  20. Stanishevskiy, V.V., Shestakova, A.K., and Chertkov, V.A., Appl. Magn. Reson., 2022, vol. 53, p. 1693. https://doi.org/10.1007/s00723-022-01503-w

    Article  CAS  Google Scholar 

  21. Abraham, R.J., Griffiths, L., and Perez, M., Magn. Reson. Chem., 2013, vol. 51, p. 143.

    Article  CAS  PubMed  Google Scholar 

  22. Leshcheva, I.F., Torocheshnikov, V.N., Sergeyev, N.M., Chertkov, V.A., and Khlopkov, V.N., J. Magn. Reson., 1991, vol. 94, p. 1. https://doi.org/10.1016/0022-2364(91)90289-6

    Article  CAS  Google Scholar 

  23. Levitt, M.H., Spin Dynamics, New, York: Wiley, 2005.

  24. Berger, S., NMR – Basic Principles and Progress, Diehl, P., Fluck, E., Günther, H., and Kosfeld, R., Eds., Berlin: Springer, 1990, vol. 22, p. 1.

  25. Hansen, P.E., Prog. Nucl. Magn. Reson. Spectrosc., 2020, vol. 120, p. 109. https://doi.org/10.1016/j.pnmrs.2020.08.001

    Article  CAS  PubMed  Google Scholar 

  26. Dziembowska, T., Hansen, P.E., and Rozwadowskia, Z., Prog. Nucl. Magn. Reson. Spectrosc., 2004, vol. 45, p. 1. https://doi.org/10.1016/j.pnmrs.2004.04.001

    Article  CAS  Google Scholar 

  27. Roznyatovsky, V.A., Sergeyev, N.M., and Chertkov, V.A., Magn. Reson. Chem., 1991, vol. 29, p. 304. https://doi.org/10.1002/mrc.1260290404

    Article  Google Scholar 

  28. Pietrzak, M., Benedict, C., Gehring, H., Daltrozzo, E., and Limbach, H.H., J. Mol. Struct., 2007, vol. 844–845, p. 222. https://doi.org/10.1016/j.molstruc.2007.04.023

    Article  CAS  Google Scholar 

  29. Guzzo, T., Aramini, A., Lillini, S., Nepravishta, R., Paci, M., and Topai, A., Tetrahedron Lett., 2015, vol. 56, p. 4455. https://doi.org/10.1016/j.tetlet.2015.05.084

    Article  CAS  Google Scholar 

  30. Hansen, P.E., Ann. Rep. NMR Spectrosc., 1983, vol. 15, p. 105.

    Article  CAS  Google Scholar 

  31. Leshcheva, I.F., Torocheshnikov, V.N., Sergeyev, N.M., Chertkov, V.A., and Khlopkov, V.N., J. Magn. Reson., 1991, vol. 94, p. 9. https://doi.org/10.1016/0022-2364(91)90290-a

    Article  CAS  Google Scholar 

  32. Taha, A. and True, N., J. Phys. Chem. A., 2000, vol. 104, p. 2985. https://doi.org/10.1021/jp993915c

    Article  CAS  Google Scholar 

  33. Gamov, G.A., Aleksandriiskii, V.V., and Sharnin, V.A., J. Mol. Liq., 2017, vol. 231, p. 238. https://doi.org/10.1016/j.molliq.2017.01.078

    Article  CAS  Google Scholar 

  34. Olsen, R.A., Liu, L., Ghaderi, N., Johns, A., Hatcher, M.E., and Mueller, L.J., J. Am. Chem. Soc., 2003, vol. 125, p. 10125. https://doi.org/10.1021/ja028751j

    Article  CAS  PubMed  Google Scholar 

  35. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Redell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09W, Revision, A.02, Wallingford: Gaussian, Inc., 2009

  36. Foresman, J.B. and Frisch, A., Exploring Chemistry with Electronic Structure Methods, Pittsburgh: Gaussian, Inc., 1996.

  37. Ganina, T.A., Cheshkov, D.A., and Chertkov, V.A., Russ. J. Org. Chem., 2017, vol. 53, p. 12. https://doi.org/10.1134/S1070428017010043

    Article  CAS  Google Scholar 

  38. Godunov, I.A., Bataev, V.A., Abramenkov, A.V., and Pupyshev, V.I., J. Phys. Chem. A, 2014, vol. 118, p. 10159. https://doi.org/10.1021/jp509602s

    Article  CAS  PubMed  Google Scholar 

  39. Ganina, T.A. and Chertkov, V.A., Russ. J. Org. Chem., 2016, vol. 52, p. 489. https://doi.org/10.1134/S1070428016040023

    Article  CAS  Google Scholar 

  40. Chertkov, V.A., Shestakova, A.K., and Davydov, D.V., Chem. Heterocycl. Compd., 2011, vol. 47, p. 45. https://doi.org/10.1007/s10593-011-0718-z

    Article  CAS  Google Scholar 

  41. Uvarov, V.A., Chertkov, V.A., and Sergeyev, N.M., J. Chem. Soc. Perkin. Trans. 2, 1994, vol. 2, p. 2375. https://doi.org/10.1039/P29940002375

    Article  Google Scholar 

  42. Morgan, W.D., Birdsall, B., Nieto, P.M., Gargaro, A.R., and Feeney, J., Biochemistry, 1999, vol. 38, p. 2127. https://doi.org/10.1021/bi982359u

    Article  CAS  PubMed  Google Scholar 

  43. Williamson, R.T., Buevich, A.V., and Martin, G.E., Tetrahedron Lett., 2014, vol. 55, p. 3365. https://doi.org/10.1016/j.tetlet.2014.04.060

    Article  CAS  Google Scholar 

  44. Berger, S., Braun, S., 200 and more NMR Experiments, Oxford, Weinheim: Wiley, 2014.

  45. Claridge, T.D.W., High-resolution NMR Techniques in Organic Chemistry. Tetrahedron Organic Chemistry Series, Oxford: Elsevier, 2009, vol. 27.

  46. Reutov, O.A., Barinov, I.V., Chertkov, V.A., and Sokolov, V.I., J. Organomet. Chem., 1985, vol. 297, p. C25. https://doi.org/10.1016/0022-328X(85)80443-5

Download references

ACKNOWLEDGMENTS

A. Shestakova is grateful to the Alexander von Humboldt Foundation for financial support, and V. Chertkov was financially supported by the Chemical Department, Moscow State University (project KHIMOMET-2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Chertkov.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2023, Vol. 59, No. 8, pp. 1012–1024 https://doi.org/10.31857/S0514749223080025.

For communication III, see [1].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanishevskii, V.V., Schestakova, A.K. & Chertkov, V.A. Dynamic Structure of Organic Compounds in Solution by Dynamic NMR Measurements and Quantum Molecular Dynamics Calculations: IV. Benzamide. Russ J Org Chem 59, 1298–1308 (2023). https://doi.org/10.1134/S107042802308002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042802308002X

Keywords:

Navigation