Skip to main content
Log in

Mass Spectra of New Heterocycles: XXVI. Electron Impact Ionization Study of N-(5-Amino­thiophen-2-yl)- and N-[2-(Methylsulfanyl)-1,3-thiazol-5-yl]­isothioureas

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The behavior of a series of previously unknown N-(5-aminothiophen-2-yl)- and N-[2-(methyl­sulfanyl)-1,3-thiazol-5-yl]isothioureas under electron impact ionization (70 eV) has been studied for the first time. 2-Thienylisothioureas give rise to a fairly stable molecular ion (Irel 11–25%), whereas no molecular ion peak is present in the mass spectra of 1,3-thiazolylisothioureas. A common fragmentation pathway of the molecular ions of 2-thienyl- and 1,3-thiazolylisothioureas involves cleavage of the C–N bond in the isothiourea fragment with charge localization on the imino nitrogen atom to give [R3SC≡NR2]+ ion (Irel 34–100%); furthermore, [M – R3SC=NR2]+ ion with charge localization on the amino nitrogen atom is formed from thienyl derivatives and is the most abundant (Irel 91–100%). The mass spectra of 1,3-thiazolylisothioureas also showed [M – MeSCN]+· and [MeSCS]+ ion peaks resulting from decomposition of the thiazole ring in the molecular ion. In addition, unlike 2-thienylisothioureas, the molecular ions of 1,3-thiazolyl analogs underwent Chet–N bond cleavage with charge localization on the thiazole fragment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

REFERENCES

  1. Klyba, L.V., Sanzheeva, E.R., Nedolya, N.A., and Tarasova, O.A., Russ. J. Org. Chem., 2023, vol. 59, p. 776. https://doi.org/10.1134/S1070428023050056

    Article  CAS  Google Scholar 

  2. Steppeler, F., Iwan, D., Wojaczyńska, E., and Wojaczyński, J., Molecules, 2020, vol. 25, article no. 401. https://doi.org/10.3390/molecules25020401

  3. Shakeel, A., Altaf, A.A., Qureshi, A.M., and Bad­shah, A., J. Drug Des. Med. Chem., 2016, vol. 2, p. 10. https://doi.org/10.11648/j.jddmc.20160201.12

    Article  Google Scholar 

  4. Khan, E., Khan, S., Gul, Z., and Muhammad, M., Crit. Rev. Anal. Chem. 2021, vol. 51, p. 812. https://doi.org/10.1080/10408347.2020.1777523

  5. Saeed, A., Mustafa, M.N., Zain-Ul-Abideen, M., Shabir, G., Erben, M.F., and Flörke, U., J. Sulfur Chem., 2019, vol. 40, p. 312. https://doi.org/10.1080/17415993.2018.1551488

    Article  CAS  Google Scholar 

  6. Goncalves, I.L., de Azambuja, G.O., Kawano, D.F., and Eifler-Lima, V.L., Mini-Rev. Org. Chem., 2018, vol. 15, p. 28. https://doi.org/10.2174/157019314666170518125219

    Article  CAS  Google Scholar 

  7. Li, J., Shi, L.-L., Chen, J., Gong, J., and Yang, Z., Synthesis, 2014, vol. 46, p. 2007. https://doi.org/10.1055/s-0034-1378209

    Article  CAS  Google Scholar 

  8. Biswas, A., Mondal, H., and Maji, M.S., J. Heterocycl. Chem., 2020, vol. 57, p. 3818. https://doi.org/10.1002/jhet.4119

    Article  CAS  Google Scholar 

  9. McLaughlin, C. and Smith, A.D., Chem. Eur. J., 2021, vol. 27, p. 1533. https://doi.org/10.1002/chem.202002059

    Article  CAS  PubMed  Google Scholar 

  10. Saeed, A., Flörke, U., and Erben, M.F., J. Sulfur Chem., 2014, vol. 35, p. 318. https://doi.org/10.1080/17415993.2013.834904

    Article  CAS  Google Scholar 

  11. Blažek Bregović, V., Basarić, N., and MlinarićMajerski, K., Coord. Chem. Rev., 2015, vol. 295, p. 80. https://doi.org/10.1016/j.ccr.2015.03.011

    Article  CAS  Google Scholar 

  12. Sulthana, M.T., Alagarsamy, V., and Chitra, K., Med. Chem. (Sharjah, United Arab Emirates), 2021, vol. 17, p. 352. https://doi.org/10.2174/1573406416666200817153033

    Article  CAS  Google Scholar 

  13. Ma, C., Wu, A., Wu, Y., Ren, X., and Cheng, M., Arch. Pharm. (Weinheim, Germany), 2013, vol. 346, p. 891. https://doi.org/10.1002/ardp.201300276

    Article  CAS  Google Scholar 

  14. Siddiqui, N., Alam, M.S., Sahu, M., Naim, M.J., Yar, M.S., and Alam, O., Bioorg. Chem., 2017, vol. 71, p. 230. https://doi.org/10.1016/j.bioorg.2017.02.009

    Article  CAS  PubMed  Google Scholar 

  15. Pucko, E., Matyja, E., Koronkiewicz, M., Ostrow­ski, R.P., and Kazimierczuk, Z., Anticancer Res., 2018, vol. 38, p. 2691. https://doi.org/10.21873/anticanres.12511

    Article  CAS  PubMed  Google Scholar 

  16. Narendhar, B., Chitra, K., and Alagarsamy, V., Pharm. Chem. J., 2021, vol. 55, p. 54. https://doi.org/10.1007/s11094-021-02371-7

    Article  CAS  Google Scholar 

  17. Sperry, J.B. and Wright, D.L., Curr. Opin. Drug Discovery Dev., 2005, vol. 8, p. 723. https://doi.org/10.1002/chin.200615242

    Article  CAS  Google Scholar 

  18. Handbook of Oligo- and Polythiophenes, Fichou, D., Ed., Weinheim: Wiley-VCH, 1999.

  19. Gupta, V. and Kant, V., Sci. Int., 2013, vol. 1, p. 253. https://doi.org/10.17311/sciintl.2013.253.260

    Article  CAS  Google Scholar 

  20. Siddiqui, N., Arshad, M.F., Ahsan, W., and Alam, M.S., Int. J. Pharm. Sci. Drug Res., 2009, vol. 1, p. 136.

    CAS  Google Scholar 

  21. Grehn, L., J. Heterocycl. Chem., 1978, vol. 15, p. 81. https://doi.org/10.1002/jhet.5570150118

    Article  CAS  Google Scholar 

  22. McCarthy, W.C. and Foss, L.E., J. Org. Chem., 1977, vol. 42, p. 1508. https://doi.org/10.1021/jo00429a004

    Article  CAS  Google Scholar 

  23. Al-Omran, F. and El-Khair, A.A., J. Heterocycl. Chem., 2004, vol. 41, p. 909. https://doi.org/10.1002/jhet.5570410610

    Article  CAS  Google Scholar 

  24. Dolzhenko, A.V., Heterocycles, 2011, vol. 83, p. 1489. https://doi.org/10.3987/REV-11-701

    Article  CAS  Google Scholar 

  25. Venkatachalam, T.K., Sudbeck, E.A., Mao, C., and Uckun, F.M., Bioorg. Med. Chem. Lett., 2001, vol. 11, p. 523. https://doi.org/10.1016/S0960-894X(01)00011-7

    Article  CAS  PubMed  Google Scholar 

  26. Tarasova, O.A., Nedolya, N.A., Albanov, A.I., and Trofimov, B.A., ChemistrySelect, 2020, vol. 5, p. 5726. https://doi.org/10.1002/slct.202000577

    Article  CAS  Google Scholar 

  27. Nedolya, N.A., PhD Thesis, Utrecht University, The Netherlands, 1999.

  28. Klyba, L.V., Sanzheeva, E.R., Nedolya, N.A., and Tara­sova, O.A., Russ. J. Org. Chem., 2023, vol. 59, p. 62. https://doi.org/10.1134/S1070428023010037

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed using the facilities of the Baikal joint analytical center, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Klyba.

Ethics declarations

The authors declare the absence of conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2023, Vol. 59, No. 7, pp. 895–903 https://doi.org/10.31857/S0514749223070030.

For communication XXV, see [1].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klyba, L.V., Sanzheeva, E.R., Nedolya, N.A. et al. Mass Spectra of New Heterocycles: XXVI. Electron Impact Ionization Study of N-(5-Amino­thiophen-2-yl)- and N-[2-(Methylsulfanyl)-1,3-thiazol-5-yl]­isothioureas. Russ J Org Chem 59, 1136–1143 (2023). https://doi.org/10.1134/S1070428023070035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023070035

Keywords:

Navigation