Skip to main content
Log in

Catalytic Applications of Vitamin-Supported Nanoparticles in Organic Chemistry

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Considering the green nature, biocompatibility, novelty, ease of preparation, and unique properties of vitamin-functionalized nanocatalysts, various vitamins have been supported on various nanosupports to be utilized as heterogeneous catalysts. Due to the novelty and synergistic effect of nanocatalysis and organo­catalysis, vitamin-functionalized nanocatalysts have been used in various organic reactions, including C–C coupling, oxidation, multicomponent reactions, etc. These heterogeneous nanocatalysts provide chemists with various advantages such as low catalyst loading, nontoxic and easy-to-handle catalyst, shorter reaction time, high yield, elimination of by-products, avoidance of hazardous organic solvents, and easy workup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

REFERENCES

  1. Saghanezhad, S.J., Nazari, Y., and Davod, F., RSC Adv., 2016, vol. 6, p. 25525. https://doi.org/10.1039/C6RA02255C

    Article  CAS  Google Scholar 

  2. Kiasat, A., Almasi, H., and Saghanezhad, S.J., Org. Chem. Res., 2015, vol. 1, p. 72. https://doi.org/10.22036/ORG.CHEM..2015.10668

    Article  Google Scholar 

  3. Matthews, J., Torres, S.J., Milte, C.M., Hopkins, I., Kukuljan, S., Nowson, C.A., and Daly, R.M., Eur. J. Nutr., 2020, vol. 59, p. 1081. https://doi.org/10.1007/s00394-019-01969-8

    Article  CAS  PubMed  Google Scholar 

  4. Reyes-Mercado, E., Rivas-Loaiza, J.A., GarcíaMerinos, J.P., López, Y., and González-Campos, J.B., Chem. Eng. Process., 2020, vol. 159, article ID 108201. https://doi.org/10.1016/j.cep.2020.108201

  5. Martin-Jimeno, F.J., Suárez-García, F., Paredes, J.I., Martínez-Alonso, A., and Tascón, J.M., J. Alloys Compd., 2020, vol. 853, article ID 157348. https://doi.org/10.1016/j.jallcom.2020.157348

  6. Fattahi, N., Ramazani, A., Ahankar, H., Asiabi, P.A., and Kinzhybalo, V., Silicon, 2019, vol. 11, p. 1441. https://doi.org/10.1007/s12633-018-9954-5

    Article  CAS  Google Scholar 

  7. Neochoritis, C.G., Zarganes-Tzitzikas, T., Katsampo­xaki-Hodgetts, K., and Dömling, A., J. Chem. Educ., 2020, vol. 97, p. 3739. https://doi.org/10.1021/acs.jchemed.0c00290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wdowik, T. and Gryko, D., ACS Catal., 2022, vol. 12, p. 6517. https://doi.org/10.1021/acscatal.2c01596

    Article  CAS  Google Scholar 

  9. Fuse, H., Irie, Y., Fuki, M., Kobori, Y., Kato, K., Yamakata, A., and Kanai, M., J. Am. Chem. Soc., 2022, vol. 144, p. 6566. https://doi.org/10.1021/jacs.2c01705

    Article  CAS  PubMed  Google Scholar 

  10. Farsi, R., Mohammadi, M.K. and Saghanezhad, S.J., Res. Chem. Intermed., 2020, vol. 47, p. 1161. https://doi.org/10.1007/s11164-020-04322-5

    Article  CAS  Google Scholar 

  11. Xiao, R., Wang, S., Ibrahim, M.H., Abdu, H.I., Shan, D., Chen, J., and Lu, X., J. Chromatogr. A, 2019, vol. 1593, p. 1. https://doi.org/10.1016/j.chroma.2019.02.005

    Article  CAS  PubMed  Google Scholar 

  12. Veisi, H., Pirhayati, M., and Kakanejadifard, A., Tetrahedron Lett., 2017, vol. 58, p. 4269. https://doi.org/10.1016/j.tetlet.2017.09.078

    Article  CAS  Google Scholar 

  13. Kudr, J., Haddad, Y., Richtera, L., Heger, Z., Cernak, M., Adam, V., and Zitka, O., Nanomaterials, 2017, vol. 7, article no. 243. https://doi.org/10.3390/nano7090243

  14. Khoshnevisan, K., Vakhshiteh, F., Barkhi, M., Baharifar, H., Poor-Akbar, E., Zari, N., Stamatis, H., and Bordbar, A.K., Mol. Catal., 2017, vol. 442, p. 66. https://doi.org/10.1016/j.mcat.2017.09.006

    Article  CAS  Google Scholar 

  15. Ashraf, M.A., Liu, Z., Peng, W.X., and Gao, C., Catal. Lett., 2020, vol. 150, p. 683. https://doi.org/10.1007/s10562-019-02986-2

    Article  CAS  Google Scholar 

  16. Rogers, L. and Jensen, K.F., Green Chem., 2019, vol. 21, p. 3481. https://doi.org/10.1039/C9GC00773C

    Article  CAS  Google Scholar 

  17. Poliakoff, M. and Licence, P., Nature, 2007, vol. 450, p. 810. https://doi.org/10.1038/450810a

    Article  CAS  PubMed  Google Scholar 

  18. Wu, K., Su, D., Liu, J., Saha, R., and Wang, J.P., Nanotechnology, 2019, vol. 30, article ID 502003. https://doi.org/10.1088/1361-6528/ab4241

  19. Rashid, Z., Soleimani, M., Ghahremanzadeh, R., Vossoughi, M., and Esmaeili, E., Appl. Surf. Sci., 2017, vol. 426, p. 1023. https://doi.org/10.1016/j.apsusc.2017.07.246

    Article  CAS  Google Scholar 

  20. Liu, S., Yu, B., Wang, S., Shen, Y., and Cong, H., Adv. Colloid Interface Sci., 2020, vol. 280, article ID 102165. https://doi.org/10.1016/j.cis.2020.102165

  21. Hedayatnasab, Z., Abnisa, F., and Daud, W.M.A.W., Mater. Des., 2017, vol. 123, p. 174. https://doi.org/10.1016/j.matdes.2017.03.036

    Article  CAS  Google Scholar 

  22. Bilal, M., Zhao, Y., Rasheed, T., and Iqbal, H.M., Int. J. Biol. Macromol., 2018, vol. 120, p. 2530. https://doi.org/10.1016/j.ijbiomac.2018.09.025

    Article  CAS  PubMed  Google Scholar 

  23. Enders, D. and Balensiefer, T., Acc. Chem. Res., 2004, vol. 37, p. 534. https://doi.org/10.1021/ar030050j

    Article  CAS  PubMed  Google Scholar 

  24. List, B., Chem. Rev., 2007, vol. 107, p. 5413. https://doi.org/10.1021/cr078412e

    Article  CAS  Google Scholar 

  25. Wang, Y., Luo, X., Tang, J., Hu, X., Xu, Q., and Yang, C., Anal. Chim. Acta, 2012, vol. 713, p. 92. https://doi.org/10.1016/j.aca.2011.11.022

    Article  CAS  PubMed  Google Scholar 

  26. Wang, J., Zhao, G., and Yu, F., J. Taiwan Inst. Chem. Eng., 2016, vol. 69, p. 139. https://doi.org/10.1016/j.jtice.2016.10.004

    Article  CAS  Google Scholar 

  27. Polshettiwar, V. and Varma, R.S., Green Chem., 2010, vol. 12, p. 743. https://doi.org/10.1039/B921171C

    Article  CAS  Google Scholar 

  28. Motevalizadeh, S.F., Khoobi, M., Sadighi, A., Khalilvand-Sedagheh, M., Pazhouhandeh, M., Rama­zani, A., Faramarzi, M.A., and Shafiee, A., J. Mol. Catal. B: Enzym., 2015, vol. 120, p. 75. https://doi.org/10.1016/j.molcatb.2015.06.013

    Article  CAS  Google Scholar 

  29. Ge, N., Xu, J., Li, F., Peng, B., and Pan, S., Food Control, 2017, vol. 82, p. 83. https://doi.org/10.1016/j.foodcont.2017.06.027

    Article  CAS  Google Scholar 

  30. de Britto, D., de Moura, M.R., Aouada, F.A., Mattoso, L.H., and Assis, O.B., Food Hydrocolloids, 2012, vol. 27, p. 487. https://doi.org/10.1016/j.foodhyd.2011.09.002

    Article  CAS  Google Scholar 

  31. Chauhan, D., Gupta, P.K., and Solanki, P.R., Mater. Sci. Eng., C, 2018, vol. 93, p. 145. https://doi.org/10.1016/j.msec.2018.07.036

    Article  CAS  Google Scholar 

  32. Sayahi, M.H., Bahadorikhalili, S., Saghanezhad, S.J., Miller, M.A., and Mahdavi, M., Res. Chem. Intermed., 2020, vol. 46, p. 491. https://doi.org/10.1007/s11164-019-03962-6

    Article  CAS  Google Scholar 

  33. Saghanezhad, S.J., Sayahi, M.H., Imanifar, I., Mom­beni, M., and Hamood, S.D., Res. Chem. Intermed., 2017, vol. 43, p. 6521. https://doi.org/10.1007/s11164-017-3002-8

    Article  CAS  Google Scholar 

  34. Mohammadi, M.K., Saghanezhad, S.J., and Razza­ghiasl, N., Bull. Chem. Soc. Ethiop., 2017, vol. 31, p. 535. https://doi.org/10.4314/bcse.v31i3.17

    Article  CAS  Google Scholar 

  35. Bodaghifard, M.A., Hamidinasab, M., and Ahadi, N., Curr. Org. Chem., 2018, vol. 22, p. 234. https://doi.org/10.2174/1385272821666170705144854

    Article  CAS  Google Scholar 

  36. Fan, P., Liu, C., Hu, C., Li, F., Lin, X., Xiao, F., and Yang, S., New J. Chem., 2022, vol. 46, p. 877. https://doi.org/10.1039/D1NJ04706J

    Article  CAS  Google Scholar 

  37. Linster, C.L. and Van Schaftingen, E., FEBS J., 2007, vol. 274, p. 1. https://doi.org/10.1111/j.1742-4658.2006.05607.x

    Article  CAS  PubMed  Google Scholar 

  38. Allen, L.H., Am. J. Clin. Nutr., 2009, vol. 89, p. 693S. https://doi.org/10.3945/ajcn.2008.26947A

    Article  CAS  Google Scholar 

  39. Williams, M.T., Morrill, L.C., and Browne, D.L., ChemSusChem, 2022, vol. 15, article ID e202102157. https://doi.org/10.1002/cssc.202102157

  40. Mrówczyński, R., Nan, A., and Liebscher, J., RSC Adv., 2014, vol. 4, p. 5927. https://doi.org/10.1039/C3RA46984K

    Article  Google Scholar 

  41. Kong, Y., Tan, R., Zhao, L., and Yin, D., Green Chem., 2013, vol. 15, p. 2422. https://doi.org/10.1039/C3GC40772A

    Article  CAS  Google Scholar 

  42. Bazanov, D.R., Maximova, N.A., Seliverstov, M.Y., Zefirov, N.A., Sosonyuk, S.E., and Lozinskaya, N.A., Russ. J. Org. Chem., 2021, vol. 57, p. 1834. https://doi.org/10.1134/S107042802111004X

    Article  CAS  Google Scholar 

  43. Kazemnejadi, M., Sharafi, Z., Mahmoudi, B., Zeinali, A., and Nasseri, M.A., J. Iran. Chem. Soc., 2020, vol. 17, p. 777. https://doi.org/10.1007/s13738-019-01814-z

    Article  CAS  Google Scholar 

  44. Ghanimati, M., Abdoli-Senejani, M., Bodaghi­fard, M.A., and Momeni Isfahani, T., Eurasian Chem. Commun., 2020, vol. 2, p. 688. https://doi.org/10.33945/SAMI/ECC.2020.6.6

  45. Esmaeilpour, M., Javidi, J., and Zandi, M., Mater. Res. Bull., 2014, vol. 55, p. 78. https://doi.org/10.1016/j.materresbull.2014.04.019

    Article  CAS  Google Scholar 

  46. Dutta, A., Rahman, N., Khongriah, W., Nongrum, R., Joshi, S.R., and Nongkhlaw, R., ChemistrySelect, 2019, vol. 4, p. 12399. https://doi.org/10.1002/slct.201902279

    Article  CAS  Google Scholar 

  47. Baig, R.N., Nadagouda, M.N., and Varma, R.S., Coord. Chem. Rev., 2015, vol. 287, p. 137. https://doi.org/10.1016/j.ccr.2014.12.017

    Article  CAS  Google Scholar 

  48. Zhang, Z., Duan, H., Li, S., and Lin, Y., Langmuir, 2010, vol. 26, p. 6676. https://doi.org/10.1021/la904010y

    Article  CAS  PubMed  Google Scholar 

  49. Lu, A.H. and Li, W.C., Chem. Commun., 2005, p. 98. https://doi.org/10.1039/B414146F

  50. Tartaj, P. and Serna, C.J., J. Am. Chem. Soc., 2003, vol, 125, p. 15754. https://doi.org/10.1021/ja0380594

  51. Tartaj, P., Gonzalez-Carreno, T., and Serna, C.J.S., Langmuir, 2002, vol. 18, p. 4556. https://doi.org/10.1021/la025566a

    Article  CAS  Google Scholar 

  52. Graf, C., Vossen, D.L., Imhof, A., and van Blaaderen, A., Langmuir, 2003, vol. 19, p. 6693. https://doi.org/10.1021/la0347859

    Article  CAS  Google Scholar 

  53. Lei, L., Liu, X., Li, Y., Cui, Y., Yang, Y., and Qin, G., Mater. Chem. Phys., 2011, vol. 125, p. 866. https://doi.org/10.1016/j.matchemphys.2010.09.031

    Article  CAS  Google Scholar 

  54. Boele, M.D., van Strijdonck, G.P., De Vries, A.H., Kamer, P.C., de Vries, J.G., and van Leeuwen, P.W., J. Am. Chem. Soc., 2002, vol. 124, p. 1586. https://doi.org/10.1021/ja0176907

    Article  CAS  PubMed  Google Scholar 

  55. Gawali, S.L., Shelar, S.B., Gupta, J., Barick, K., and Hassan, P., Int. J. Biol. Macromol., 2021, vol. 166, p. 851. https://doi.org/10.1016/j.ijbiomac.2020.10.241

    Article  CAS  PubMed  Google Scholar 

  56. Zaidi, S.K.R. and Banu, N., Clin. Chim. Acta, 2004, vol. 340, p. 229. https://doi.org/10.1016/j.cccn.2003.11.003

    Article  CAS  PubMed  Google Scholar 

  57. Esam, Z., Akhavan, M., Bekhradnia, A., Moham­madi, M., and Tourani, S., Catal. Lett., 2020, vol. 150, p. 3112. https://doi.org/10.1007/s10562-020-03216-w

    Article  CAS  Google Scholar 

  58. Ashraf, M.A., Liu, Z., Zhang, D., and Alimoradi, A., Appl. Organomet. Chem., 2020, vol. 34, article ID e5668. https://doi.org/10.1002/aoc.5668

  59. Azizi, K. and Heydari, A., RSC Adv., 2014, vol. 4, p. 8812. https://doi.org/10.1039/C3RA46437G

    Article  CAS  Google Scholar 

  60. Nongrum, R., Nongthombam, G.S., Kharkongor, M., Rahman, N., Kathing, C., Myrboh, B., and Nongkh­law, R., RSC Adv., 2016, vol. 6, p. 108384. https://doi.org/10.1039/C6RA24108E

    Article  CAS  Google Scholar 

  61. Rashidizadeh, A., Ghafuri, H., Esmaili Zand, H.R., and Goodarzi, N., ACS Omega, 2019, vol. 4, p. 12544. https://doi.org/10.1021/acsomega.9b01635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Abbasi, F., Abdoli-Senejani, M., and Azizi, N., React. Kinet., Mech. Catal., 2017, vol. 122, p. 193. https://doi.org/10.1007/s11144-017-1199-6

    Article  CAS  Google Scholar 

  63. Azizi, N., Abbasi, F., and Abdoli-Senejani, M., Mater. Chem. Phys., 2017, vol. 196, p. 118. https://doi.org/10.1016/j.matchemphys.2017.04.041

    Article  CAS  Google Scholar 

  64. Ghafuri, H., Joorabchi, N., Emami, A., and Esmaili Zand, H.R., Ind. Eng. Chem. Res., 2017, vol. 56, p. 6462. https://doi.org/10.1021/acs.iecr.7b00182

    Article  CAS  Google Scholar 

  65. Esfandiary, N., Pazoki, F., Nakisa, A., Azizi, K., Radfar, I., and Heydari, A., Appl. Organomet. Chem., 2020, vol. 34, article ID e5725. https://doi.org/10.1002/aoc.5725

  66. Rafiee, F. and Mehdizadeh, N., Catal. Lett., 2018, vol. 148, p. 1345. https://doi.org/10.1007/s10562-018-2363-y

    Article  CAS  Google Scholar 

  67. Shaterian, H.R. and Molaei, P., Appl. Organomet. Chem., 2019, vol. 33, article ID e4964. https://doi.org/10.1002/aoc.4964

  68. Hou, F., Zheng, W., and Yousefi, N., Bull. Chem. React. Eng. Catal., 2020, vol. 15, p. 199. https://doi.org/10.9767/bcrec.15.1.6179.199-212

    Article  CAS  Google Scholar 

  69. Kurtan, U., Amir, M., and Baykal, A., Chin. J. Catal., 2015, vol. 36, p. 705. https://doi.org/10.1016/S1872-2067(14)60316-8

    Article  CAS  Google Scholar 

  70. Afradi, M., Pour, S.A., Dolat, M., and Yazdani‐Elah‐Abadi, A., Appl. Organomet. Chem., 2018, vol. 32, article ID e4103. https://doi.org/10.1002/aoc.4103

  71. Rezapour, E., Jafarpour, M., and Rezaeifard, A., Catal. Lett., 2018, vol. 148, p. 3165. https://doi.org/10.1007/s10562-018-2513-2

    Article  CAS  Google Scholar 

  72. Khazaei, A., Tavasoli, M., and Moosavi-Zare, A.R., Res. Chem. Intermed., 2018, vol. 44, p. 5893. https://doi.org/10.1007/s11164-018-3462-5

    Article  CAS  Google Scholar 

  73. Foroughi Kaldareh, M., Mokhtary, M., and Nikpas­sand, M., Appl. Organomet. Chem., 2020, vol. 34, article ID e5469. https://doi.org/10.1002/aoc.5469

  74. Alishahi, N., Nasr‐Esfahani, M., Mohammadpoor‐Baltork, I., Tangestaninejad, S., Mirkhani, V., and Moghadam, M., Appl. Organomet. Chem., 2020, vol. 34, article ID e5681. https://doi.org/10.1002/aoc.5681

  75. Khazaei, A., Gohari-Ghalil, F., Tavasoli, M., Rezaei-Gohar, M., and Moosavi-Zare, A.R., Chem. Methodol., 2020, vol. 4, p. 543. https://doi.org/10.22034/chemm.2020.106433

    Article  CAS  Google Scholar 

  76. Bagheri, S., Pazoki, F., Esfandiary, N., Fadaei, M.M., and Heydari, A., Appl. Organomet. Chem., 2020, vol. 34, article ID e5723. https://doi.org/10.1002/aoc.5723

  77. Farzaneh, F., Taghavi, J., Malakooti, R., and Ghandi, M., J. Mol. Catal. A: Chem., 2006, vol. 244, p. 252. https://doi.org/10.1016/j.molcata.2005.08.058

    Article  CAS  Google Scholar 

  78. Shaabani, A., Rashidi Vahid, A., Shaabani, S., Moham­madian, R., Nazeri, M.T., and Keramati Nejad, M., Appl. Organomet. Chem., 2018, vol. 32, article ID e4510. https://doi.org/10.1002/aoc.4510

  79. Hajipour, A.R., Check, M., and Khorsandi, Z., Appl. Organomet. Chem., 2017, vol. 31, article ID e3769. https://doi.org/10.1002/aoc.3769

  80. Pourmorteza, N., Jafarpour, M., Feizpour, F., and Rezaeifard, A., RSC Adv., 2020, vol. 10, p. 12053. https://doi.org/10.1039/D0RA00075B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Suksiriworapong, J., Sripha, K., Kreuter, J., and Junyaprasert, V.B., Bioconjugate Chem., 2011, vol. 22, p. 582. https://doi.org/10.1021/bc100270m

    Article  CAS  Google Scholar 

  82. Suksiriworapong, J., Sripha, K., Kreuter, J., and Junya­prasert, V.B., Int. J. Pharm., 2012, vol. 423, p. 562. https://doi.org/10.1016/j.ijpharm.2011.11.033

    Article  CAS  PubMed  Google Scholar 

  83. Thepphankulngarm, N., Wonganan, P., Sapcharoen­kun, C., Tuntulani, T., and Leeladee, P., New. J. Chem., 2017, vol. 41, p. 13823. https://doi.org/10.1039/C7NJ02754K

    Article  CAS  Google Scholar 

  84. Amir, M., Kurtan, U., and Baykal, A., Chin. J. Catal., 2015, vol. 36, p. 1280. https://doi.org/10.1016/S1872-2067(15)60879-8

    Article  CAS  Google Scholar 

  85. Zdarta, J., Meyer, A.S., Jesionowski, T., and Pinelo, M., Catalysts, 2018, vol. 8, article no. 92. https://doi.org/10.3390/catal8020092

  86. Franconetti, A. and de Gonzalo, G., ChemCatChem, 2018, vol. 10, p. 5554. https://doi.org/10.1002/cctc.201801459

    Article  CAS  Google Scholar 

  87. Duchemin, N., Org. Biomol. Chem., 2017, vol. 15, p. 7072. https://doi.org/10.1039/C7OB00176B

    Article  CAS  PubMed  Google Scholar 

  88. Bilal, M., Asgher, M., Cheng, H., Yan, Y., and Iqbal, H.M., Crit. Rev. Biotechnol., 2019, vol. 39, p. 202. https://doi.org/10.1080/07388551.2018.1531822

    Article  CAS  PubMed  Google Scholar 

  89. Verma, M.L., Puri, M., and Barrow, C.J., Crit. Rev. Biotechnol., 2016, vol. 36, p. 108. https://doi.org/10.3109/07388551.2014.928811

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We gratefully acknowledge the support of this work by Production Technology Research Institute of ACECR Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Saghanezhad.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farsi, R., Fallah-Mehrjardi, M., Saghanezhad, S.J. et al. Catalytic Applications of Vitamin-Supported Nanoparticles in Organic Chemistry. Russ J Org Chem 59, 503–520 (2023). https://doi.org/10.1134/S1070428023030193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023030193

Keywords:

Navigation