Skip to main content
Log in

Transformations of 3-(Bromomethyl)-5,7-dimethyl-2-oxaadamantan-1-ol in Sulfuric Acid

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Reactions of 3-(bromomethyl)-5,7-dimethyl-2-oxaadamantan-1-ol with 96% sulfuric acid in the absence and in the presence of nucleophiles have been studied. These reactions involve a series of skeletal transformations and open the way to difficultly accessible 1,2,3-trisubstituted adamantanes. The structure of the synthesized compounds was studied by 2D NMR spectroscopy and X-ray analysis. The products can be used as starting materials for the synthesis of new cage heterocycles with potential biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Fig. 1.
Fig. 2.
Scheme
Scheme
Scheme
Scheme
Scheme

REFERENCES

  1. Klapötke, T.M., Krumm, B., and Widera, A., ChemPlusChem, 2018, vol. 83, p. 61. https://doi.org/10.1002/cplu.201700542

    Article  CAS  PubMed  Google Scholar 

  2. Harrison, K.W., Rosenkoetter, K.E., and Harvey, B.G., Energy Fuels, 2018, vol. 32, p. 7786. https://doi.org/10.1021/acs.energyfuels.8b00792

    Article  CAS  Google Scholar 

  3. Xie, J., Zhang, X., Xie, J., Xu, J., Pan, L., and Zou, J.-J., Fuel, 2019, vol. 239, p. 652. https://doi.org/10.1016/j.fuel.2018.11.064

    Article  CAS  Google Scholar 

  4. Agnew-Francis, K.A. and Williams, C.M., Adv. Synth. Catal., 2016, vol. 358, p. 675. https://doi.org/10.1002/adsc.201500949

    Article  CAS  Google Scholar 

  5. Pavlov, D., Sukhikh, T., Filatov, E., and Potapov, A., Molecules, 2019, vol. 24, article no. 2717. https://doi.org/10.3390/molecules24152717

  6. Parmar, B., Patel, P., Murali, V., Rachuri, Y., Kureshy, R.I., Khan, N.H., and Suresh, E., Inorg. Chem. Front., 2018, vol. 5, p. 2630. https://doi.org/10.1039/C8QI00744F

    Article  CAS  Google Scholar 

  7. Zheng, Y.-Z., Zheng, Z., Tong, M.-L., and Chen, X.-M., Polyhedron, 2013, vol. 52, p. 1159. https://doi.org/10.1016/j.poly.2012.06.051

    Article  CAS  Google Scholar 

  8. Nasrallah, H. and Hierso, J.-C., Chem. Mater., 2019, vol. 31, p. 619. https://doi.org/10.1021/acs.chemmater.8b04508

    Article  CAS  Google Scholar 

  9. Ryan, L.S., Nakatsuka, A., and Lippert, A.R., Results Chem., 2021, vol. 3, article ID 100106. https://doi.org/10.1016/j.rechem.2021.100106

  10. Kagalwala, H.N., Reeves, R.T., and Lippert, A.R., Curr. Opin. Chem. Biol., 2022, vol. 68, article ID 102134. https://doi.org/10.1016/j.cbpa.2022.102134

  11. Vacher, M., Galván, I.F., Ding, B.-W., Schramm, S., Berraud-Pache, R., Naumov, P., Ferré, N., Liu, Y.-J., Navizet, I., Roca-Sanjuán, D., Baader, W.J., and Lindh, R., Chem. Rev., 2018, vol. 118, p. 6927. https://doi.org/10.1021/acs.chemrev.7b00649

    Article  CAS  PubMed  Google Scholar 

  12. Gu, Y., Zhou, X., Li, Y., Wu, K., Wang, F., Huang, M., Guo, F., Wang, Y., Gong, S., Ma, D., and Yang, C., Org. Electron., 2015, vol. 25, p. 193. https://doi.org/10.1016/j.orgel.2015.06.036

    Article  CAS  Google Scholar 

  13. Wanka, L., Iqbal, K., and Schreiner, P.R., Chem. Rev., 2013, vol. 113, p. 3516. https://doi.org/10.1021/cr100264t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stockdale, T.P. and Williams, C.M., Chem. Soc. Rev., 2015, vol. 44, p. 7737. https://doi.org/10.1039/c4cs00477a

    Article  CAS  PubMed  Google Scholar 

  15. Spilovska, K., Zemek, F., Korabecny, J., Nepovimo­va, E., Soukup, O., Windisch, M., and Kuca, K., Curr. Med. Chem., 2016, vol. 23, p. 3245. https://doi.org/10.2174/0929867323666160525114026

    Article  CAS  PubMed  Google Scholar 

  16. Lamoureux, G. and Artavia, G., Curr. Med. Chem., 2010, vol. 17, p. 2967. https://doi.org/10.2174/092986710792065027

    Article  CAS  PubMed  Google Scholar 

  17. Zarubaev, V.V., Golod, E.L., Anfimov, P.M., Shtro, A.A., Saraev, V.V., Gavrilov, A.S., Logvinov, A.V., and Kiselev, O.I., Bioorg. Med. Chem., 2010, vol. 18, p. 839. https://doi.org/10.1016/j.bmc.2009.11.047

    Article  CAS  PubMed  Google Scholar 

  18. Suslov, E.V., Mozhaytsev, E.S., Korchagina, D.V., Bormotov, N.I., Yarovaya, O.I., Volcho, K.P., Serova, O.A., Agafonov, A.P., Maksyutov, R.A., Shishkina, L.N., and Salakhutdinov, N.F., RSC Med. Chem., 2020, vol. 11, p. 1185. https://doi.org/10.1039/D0MD00108B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Spasov, A.A., Khamidova, T.V., Bugaeva, L.I., and Morozov, I.S., Pharm. Chem. J., 2000, vol. 34, p. 1. https://doi.org/10.1007/BF02524549

    Article  CAS  Google Scholar 

  20. Papanastasiou, I., Tsotinis, A., Kolocouris, N., Nikas, S.P., and Vamvakides, A., Med. Chem. Res., 2014, vol. 23, p. 1966. https://doi.org/10.1007/s00044-013-0798-7

    Article  CAS  Google Scholar 

  21. Kadernani, Y.E., Zindo, F.T., Kapp, E., Malan, S.F., and Joubert, J., MedChemComm, 2014, vol. 5, p. 1678. https://doi.org/10.1039/C4MD00244J

    Article  CAS  Google Scholar 

  22. Protopopova, M., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Einck, L., and Nacy, C.A., J. Antimicrob. Chemother., 2005, vol. 56, p. 968. https://doi.org/10.1093/jac/dki319

    Article  CAS  PubMed  Google Scholar 

  23. Cheng, H., Hoffman, J., LeSajiv, P., Nair, K., Cripps, S., Matthews, J., Smith, C., Yang, M., Kupchinsky, S., Dress, K., Edwards, M., Cole, B., Walters, E., Loh, C., Ermolieff, J., Fanjul, A., Bhat, G.B., Herrera, J., Pauly, T., Hosea, N., Paderes, G., and Rejto, P., Bioorg. Med. Chem. Lett., 2010, vol. 20, p. 2897. https://doi.org/10.1016/j.bmcl.2010.03.032

    Article  CAS  PubMed  Google Scholar 

  24. Dembitsky, V.M., Gloriozova, T.A., and Poroikov, V.V., Biochem. Biophys. Res. Commun., 2020, vol. 529, p. 1225. https://doi.org/10.1016/j.bbrc.2020.06.123

    Article  CAS  PubMed  Google Scholar 

  25. Shokova, I. A. and Kovalev, V.V., Pharm. Chem. J., 2016, vol. 50, p. 63. https://doi.org/10.1007/s11094-016-1400-7

    Article  CAS  Google Scholar 

  26. Spasov, A.A., Vasil’ev, P.M., Babkov, D.A., Prokhoro­va, T.Yu., Sturova, E.A., Klimochkin, Yu.N., Leono­va, M.V., and Baimuratov, M.R., Russ. J. Bioorg. Chem., 2017, vol. 43, p. 449. https://doi.org/10.1134/S1068162017040124

    Article  CAS  Google Scholar 

  27. Liu, Z., Yang, S., Jin, X., Zhang, G., Guo, B., Chen, H., Yu, P., Sun, Y., Zhang, Z., and Wang, Y., MedChemComm, 2017, vol. 8, p. 135. https://doi.org/10.1039/c6md00509h

    Article  CAS  PubMed  Google Scholar 

  28. Shiryaev, V.A. and Klimochkin, Y.N., Chem. Heterocycl. Compd., 2020, vol. 56, p. 626. https://doi.org/10.1007/s10593-020-02712-6

    Article  CAS  Google Scholar 

  29. Klimochkin, Yu.N., Shiryaev, V.A., and Leonova, M.V., Russ. Chem. Bull., Int. Ed., 2015, vol. 64, p. 1473. https://doi.org/10.1007/s11172-015-1035-y

    Article  CAS  Google Scholar 

  30. Shiryaev, V.A., Skomorohov, M.Yu., Leonova, M.V., Bormotov, N.I., Serova, O.A., Shishkina, L.N., Agafo­nov, A.P., Maksyutov, R.A., and Klimochkin, Y.N., Eur. J. Med. Chem., 2021, vol. 221, article ID 113485. https://doi.org/10.1016/j.ejmech.2021.113485

  31. Shiryaev, V.A., Radchenko, E.V., Palyulin, V.A., Zefi­rov, N.S., Bormotov, N.I., Serova, O.A., Shishkina, L.N., Baimuratov, M.R., Bormasheva, K.M., Gruzd, Y.A., Ivleva, E.A., Leonova, M.V., Lukashenko, A.V., Osipov, D.V., Osyanin, V.A., Reznikov, A.N., Shadrikova, V.A., Sibiryakova, A.E., Tkachenko, I.M., and Klimochkin, Y.N., Eur. J. Med. Chem., 2018, vol. 158, p. 214. https://doi.org/10.1016/j.ejmech.2018.08.009

    Article  CAS  PubMed  Google Scholar 

  32. Duque, M.D., Camps, P., Profire, L., Montaner, S., Vázquez, S., Sureda, F.X., Mallol, J., López-Querol, M., Naesens, L., De Clercq, E., Prathalingam, S.R., and Kelly, J.M., Bioorg. Med. Chem., 2009, vol. 17, p. 3198. https://doi.org/10.1016/j.bmc.2009.02.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leiva, R., Gazzarrini, S., Esplugas, R., Moroni, A., Naesens, L., Sureda, F.X., and Vázquez, S., Tetrahedron Lett., 2015, vol. 56, p. 1272. https://doi.org/10.1016/j.tetlet.2015.01.160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Codony, S., Pujol, E., Pizarro, J., Feixas, F., Valverde, E., Loza, M.I., Brea, J.M., Saez, E., Oyarzabal, J., Pineda-Lucena, A., Perez, B., Perez, C., RodríguezFranco, M.I., Leiva, R., Osuna, S., Morisseau, C., Hammock, B.D., Vazquez-Carrera, M., and Vazquez, S., J. Med. Chem., 2020, vol. 63, p. 9237. https://doi.org/10.1021/acs.jmedchem.0c00310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ronco, C., Jean, L., and Renard, P.Y., Tetrahedron Lett., 2010, vol. 66, p. 7399. https://doi.org/10.1016/j.tet.2010.07.021

    Article  CAS  Google Scholar 

  36. Ronco, C., Foucault, R., Gillon, E., Bohn, P., Nachon, F., Jean, L., and Renard, P.Y., ChemMedChem, 2011, vol. 6, p. 876. https://doi.org/10.1002/cmdc.201000523

    Article  CAS  PubMed  Google Scholar 

  37. Mlinarić-Majerski, K. and Kragol, G., Tetrahedron, 2001, vol. 57, p. 449.

    Article  Google Scholar 

  38. Marchand, A.P., Kumar, K.A., and McKim, A.S., Tetrahedron, 1997, vol. 53, p. 3467. https://doi.org/10.1016/S0040-4020(97)00075-6

    Article  CAS  Google Scholar 

  39. Ramljak, T.S., Despotovic, I., and MlinaricMajerski, K., Tetrahedron, 2013, vol. 69, p. 10610. https://doi.org/10.1016/j.tet.2013.10.039

    Article  CAS  Google Scholar 

  40. Ivleva, E.A., Klepikov, V.V., Khatmullina, Yu.E., Rybakov, V.B., and Klimochkin, Yu.N., Russ. J. Org. Chem., 2022, vol. 58, p. 38. https://doi.org/10.1134/S1070428022010043

    Article  CAS  Google Scholar 

  41. Moiseev, I.K. and Doroshenko, R.I., Zh. Org. Khim., 1983, vol. 19, p. 1117.

    CAS  Google Scholar 

  42. Moiseev, I.K., Bagrii, E.I., Klimochkin, Yu.N., Dolgo­polova, T.N., Trakhtenberg, P.L., and Zemtsova, M.N., Bull. Acad. Sci. USSR, Div. Chem. Sci., 1985, vol. 24, no. 9, p. 1980. https://doi.org/10.1007/BF00953950

    Article  Google Scholar 

  43. Shiryaev, A.K. and Moiseev, I.K., Russ. J. Org. Chem., 2001, vol. 37, p. 746. https://doi.org/10.1023/A:1012428724127

    Article  CAS  Google Scholar 

  44. Moiseev, I.K., Stulin, N.V., Yudashkin, A.V., and Klimochkin, Yu.N., Zh. Obshch. Khim., 1985, vol. 55, p. 1655.

    CAS  Google Scholar 

  45. Klimochkin, Yu.N., Vologin, M.F., Korzhev, I.R., and Bagrii, E.I., Neftekhimiya, 2001, vol. 41, p. 30.

    Google Scholar 

  46. Ivleva, E.A., Tkachenko, I.M., and Klimochkin, Yu.N., Russ. J. Org. Chem., 2016, vol. 52, p. 1558. https://doi.org/10.1134/S1070428016110026

    Article  CAS  Google Scholar 

  47. Klimochkin, Yu.N., Ivleva, E.A., and Shiryaev, V.A., Russ. J. Org. Chem., 2021, vol. 57, p. 355. https://doi.org/10.1134/S1070428021030052

    Article  CAS  Google Scholar 

  48. Klimochkin, Yu.N. and Ivleva, E.A., Russ. J. Org. Chem., 2022, vol. 58, p. 669. https://doi.org/10.1134/S1070428022050050

    Article  CAS  Google Scholar 

  49. Ivleva, E.A., Petrova, E.V., Klimochkin, Y.N., and Rybakov, V.B., CCDC 1921976: Experimental Crystal Structure Determination. CSD Commun., 2019. https://doi.org/10.5517/ccdc.csd.cc22hz7t

  50. Yurchenko, A.G., Murzinova, Z.N., and Stepanov, F.N., Zh. Org. Khim., 1972, vol. 8, p. 2332.

    CAS  Google Scholar 

  51. Yurchenko, A.G., Murzinova, Z.N., and Isaev, S.D., Zh. Org. Khim., 1975, vol. 11, p. 1427.

    Google Scholar 

  52. Sheldrick, G.M., Acta Crystallogr., Sect. C, 2015, vol. 71, p. 3. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  53. Farrugia, L.J., J. Appl. Crystallogr., 2012, vol. 45, p. 849. https://doi.org/10.1107/S0021889812029111

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was performed using the facilities of the “Investigation of Physicochemical Properties of Compounds and Materials” joint center at the Samara State Technical University. The Stoe STADI VARI Pilatus100K diffrac­tometer used for the X-ray diffraction study of compound 4 was purchased according to the program for the development of Moscow State University.

Funding

The syntheses were financially supported by the Russian Science Foundation (project no. 20-73-00250). Spectral studies were performed under financial support by the Ministry of Science and Higher Education of the Russian Federation (project no. FSSE-2023-0003) in the framework of state assignment to Samara State Technical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Ivleva.

Ethics declarations

The authors declare the absence of conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2023, Vol. 59, No. 3, pp. 366–375 https://doi.org/10.31857/S0514749223030084.

Dedicated to Full Member of the Russian Academy of Sciences I.P. Beletskaya on her jubilee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivleva, E.A., Simatova, E.V., Zaborskaya, M.S. et al. Transformations of 3-(Bromomethyl)-5,7-dimethyl-2-oxaadamantan-1-ol in Sulfuric Acid. Russ J Org Chem 59, 409–416 (2023). https://doi.org/10.1134/S1070428023030089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428023030089

Keywords:

Navigation