Skip to main content
Log in

Design, Synthesis, In Vitro Cytotoxicity, ADME Prediction, and Molecular Docking Study of Benzimidazole-Linked Pyrrolone and N-Benzylpyrrolone Derivatives

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

A series of benzimidazole-tethered pyrrolones and N-benzylpyrrolones were synthesized, charac­terized, and explored for their in vitro anti-proliferative activities. The cytotoxicity of the synthesized com­pounds was evaluated against three cancer cell lines, A549, MCF7, and DU145. (E)-5-(1H-Benzimidazol-2-yl)-3-(3,4,5-trimethoxbenzylidene)-1H-pyrrol-2(3H)-one having three methoxy groups at 3,4,5-positions exhibited excellent activity against A549, MCF7, and DU145 cancer cell lines with IC50 values of 8.3±0.53, 7.2±1.42, and 7.7±0.13 µM, respectively. Another pyrrolone derivative with one hydroxy and one methoxy substituents, (E)-5-(1H-benzimidazol-2-yl)-3-(4-hydroxy-3-methoxybenzylidene)-1H-pyrrol-2(3H)-one, also displayed very good activity against A549, MCF7, and DU145 cell lines with IC50 values of 9.6±0.12, 7.3±0.24, and 8.7± 0.24 µM, respectively. Molecular docking study revealed that all compounds fit into the pocket of VEGFR-2 within the key amino acid residues Glu885, Cys919, and Asp1046. The docking scores and binding energies were very consistent with the experimental anticancer activity. Pharmacokinetic (ADME) parameters of the potent derivatives were also found to be within an acceptable range. It could be concluded that benzimidazole-linked pyrrolones are more potent than their benzylpyrrolone analogs, and therefore this class of compounds could be explored further for the development of potent anticancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Scheme
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Ahn, Y. and Jun, Y., Early Hum. Dev., 2007, vol. 83, p. 255. https://doi.org/10.1016/j.earlhumdev.2006.05.022

    Article  Google Scholar 

  2. Rashid, M., Husain, A., and Mishra, R., Eur. J. Med. Chem., 2012, vol. 54, p. 855. https://doi.org/10.1016/j.ejmech.2012.04.027

    Article  CAS  Google Scholar 

  3. Hadoux, J. and Schlumberger, M., Best Pract. Res., Clin. Endocrinol. Metab., 2017, vol. 31, p. 335. https://doi.org/10.1016/j.beem.2017.04.009

    Article  CAS  Google Scholar 

  4. Karabajakian, A., Toussaint, P., Neidhardt, E.M., Paulus, V., Saintigny, P., and Fayette, J., Anticancer Drugs, 2017, vol. 28, p. 362. https://doi.org/10.1097/CAD.0000000000000480

    Article  CAS  Google Scholar 

  5. Chaffer, C.L. and Weinberg, R.A., Science, 2011, vol. 331, p. 1559. https://doi.org/10.1126/science.1203543

    Article  CAS  Google Scholar 

  6. Steeg, P.S. and Theodorescu, D., Nat. Clin. Pract. Oncol., 2008, vol. 5, p. 206. https://doi.org/10.1038/ncponc1066

    Article  CAS  Google Scholar 

  7. Jukić, M., Rastija, V., Opačak-Bernardi, T., Stolić, I., Krstulović, L., Bajić, M., and Glavaš-Obrovac, L., J. Mol. Struct., 2017, vol. 1133, p. 66. https://doi.org/10.1016/j.molstruc.2016.11.074

    Article  CAS  Google Scholar 

  8. Rui, M., Rossi, D., Marra, A., Paolillo, M., Schinelli, S., Curti, D., Tesei, A., Cortesi, M., Zamagni, A., Laurini, E., Pricl, S., Schepmann, D., Wűnsch, B., Urban, E., Pace, V., and Collina, S., Eur. J. Med. Chem., 2016, vol. 124, p. 649. https://doi.org/10.1016/j.ejmech.2016.08.067

    Article  CAS  Google Scholar 

  9. Hsieh, C.Y., Ko, P.W., Chang, Y.J., Kapoor, M., Liang, Y.C., Chu, H.L., Lin, H.H., Horng, J.C., and Hsu, M.H., Molecules, 2019, vol. 24, p. 3259. https://doi.org/10.3390/molecules24183259

    Article  CAS  Google Scholar 

  10. Lemmon, M.A. and Schlessinger, J., Cell, 2010, vol. 25, p. 1117. https://doi.org/10.1016/j.cell.2010.06.011

    Article  CAS  Google Scholar 

  11. Kim, M., Baek, M., and Kim, D.J., Curr. Pharm. Des., 2017, vol. 23, p. 4226. https://doi.org/10.2174/1381612823666170616082125

    Article  CAS  Google Scholar 

  12. Wang, M., Xu, S., Lei, H., Wang, C., Xiao, Z., Jia, S., Zhi, J., Zheng, P., and Zhu, W., Bioorg. Med. Chem., 2017, vol. 25, p. 5754. https://doi.org/10.1016/j.bmc.2017.09.003

    Article  CAS  Google Scholar 

  13. Tugues, S., Koch, S., Gualandi, L., Li, X., Claesson-Welsh, L., Mol. Aspects Med., 2011, vol. 32, p. 88. https://doi.org/10.1016/j.mam.2011.04.004

    Article  CAS  Google Scholar 

  14. El-Helby, A.G.A., Sakr, H., Eissa, I.H., Abulkhair, H., Al-Karmalawy, A.A., and El-Adl, K., Arch. Pharm. (Weinheim), 2019, vol. 352, article ID 1900113. https://doi.org/10.1002/ardp.201900113

  15. Sharma, N., Sharma, M., Rahman, Q.I., Akhtar, S., and Muddassir, M., J. Biomol. Struct. Dyn., 2021, vol. 39, p. 2806. https://doi.org/10.1080/07391102.2020.1754916

    Article  CAS  Google Scholar 

  16. Benassi, A., Doria, F., and Pirota, V., Int. J. Mol. Sci., 2020, vol. 21, article no. 8692. https://doi.org/10.3390/ijms21228692

  17. Çevik, U.A., Sağlık, B.N., Ardıç, C.M., Özkay, Y., and Atlı, O., Turk. J. Biochem., 2018, vol. 43, p. 151. https://doi.org/10.1515/tjb-2017-0167

    Article  CAS  Google Scholar 

  18. Helwa, A.A., El-Dydamony, N.M., Radwan, R.A., Abdelraouf, S.M., and Abdelnaby, R.M., Bioorg. Chem., 2020, vol. 102, article ID 104051. https://doi.org/10.1016/j.bioorg.2020.104051

  19. Wu, L.T., Jiang, Z., Shen, J.J., Yi, H., Zhan, Y.C., Sha, M.Q., Wang, Z., Xue, S.T., Li, Z.R., Eur. J. Med. Chem., 2016, vol. 114, p. 328. https://doi.org/10.1016/j.ejmech.2016.03.029

    Article  CAS  Google Scholar 

  20. Morais, G.R., Palma, E., Marques, F., Gano, L., Oliveira, M.C., Abrunhosa, A., Miranda, H.V., Outeiro, T.F., Santos, I., and Paulo, A., J. Heterocycl. Chem., 2017, vol. 54, p. 255. https://doi.org/10.1002/jhet.2575

    Article  CAS  Google Scholar 

  21. Onnis, V., Demurtas, M., Deplano, A., Balboni, G., Baldisserotto, A., Manfredini, S., Pacifico, S., Liekens, S., and Balzarini, J., Molecules, 2016, vol. 21, article no. 579. https://doi.org/10.3390/molecules21050579

  22. Root, W.J., Hiemstra, H., and Speckamp, W.N., J. Org. Chem., 1992, vol. 57, p. 1059. https://doi.org/10.1021/jo00030a002

    Article  Google Scholar 

  23. Ahmad, A., Husain, A., Khan, S.A., Mujeeb, M., and Bhandari, A., J. Saudi Chem. Soc., 2015, vol. 19, p. 340. https://doi.org/10.1016/j.jscs.2014.05.007

    Article  Google Scholar 

  24. Du, X., Yin, D., Ge, Z., Wang, X., and Li, R., RSC Adv., 2017, vol. 7, p. 24547. https://doi.org/10.1039/c7ra03069j

    Article  CAS  Google Scholar 

  25. Rashid, M., Husain, A., Mishra, R., Karim, S., Khan, S., Ahmad, M., Al-wabel, N., Husain, A., Ahmad, A., and Khan, S.A., Arab. J. Chem., 2019, vol. 12, p. 3202. https://doi.org/10.1016/j.arabjc.2015.08.019

    Article  CAS  Google Scholar 

  26. Husain, A., Rashid, M., Shaharyar, M., Siddiqui, A.A., and Mishra, R., Eur. J. Med. Chem., 2013, vol. 62, p. 785. https://doi.org/10.1016/j.ejmech.2012.07.011

    Article  CAS  Google Scholar 

  27. Rashid, M., Husain, A., Shaharyar, M., and Sarafroz, M., Anti-Cancer Agents Med. Chem., 2014, vol. 14, p. 1003. https://doi.org/10.2174/1871520614666140509153021

    Article  Google Scholar 

  28. Husain, A., Bhutani, M., Parveen, S., Khan, S.A., Ahmad, A., and Iqbal, M.A., J. Chin. Chem. Soc., 2021, vol. 68, p. 362. https://doi.org/10.1002/jccs.202000130

    Article  CAS  Google Scholar 

  29. Liew, S.K., Malagobadan, S., Arshad, N.M., and Nagoor, N.H., Biomolecules, 2020, vol. 10, article no. 138. https://doi.org/10.3390/biom10010138

  30. Reddy, T.S., Reddy, V.G., Kulhari, H., Shukla, R., Kamal, A., and Bansal, V., Eur. J. Med. Chem., 2016, vol. 117, p. 157. https://doi.org/10.1016/j.ejmech.2016.03.051

    Article  CAS  Google Scholar 

  31. Lu, W., Li, P., Shan, Y., Su, P., Wang, J., Shi, Y., and Zhang, J., Bioorg. Med. Chem., 2015, vol. 23, p. 1044. https://doi.org/10.1016/j.bmc.2015.01.006

    Article  CAS  Google Scholar 

  32. Wang, W., Wu, C., Wang, J., Luo, R., Wang, C., Liu, X., Li, J., Zhu, W., and Zheng, P., Bioorg. Med. Chem., 2016, vol. 24, p. 6166. https://doi.org/10.1016/j.bmc.2016.09.021

    Article  CAS  Google Scholar 

  33. Alnoman, R.B., Hagar, M., Parveen, S., Ahmed, H.A., and Knight, J.G., J. Photochem. Photobiol., A, 2020, vol. 395, article ID 112508. https://doi.org/10.1016/j.jphotochem.2020.112508

  34. Parveen, S., Arjmand, F., and Mohapatra, D.K., J. Photochem. Photobiol., B, 2013, vol. 126, p. 78. https://doi.org/10.1016/j.jphotobiol.2013.07.009

    Article  CAS  Google Scholar 

  35. Parveen, S., Chem. Pap., 2021, vol. 75, p. 2339. https://doi.org/10.1007/s11696-020-01496-5

    Article  CAS  Google Scholar 

  36. Parveen, S., Arjmand, F., and Tabassum, S., RSC Adv., 2019, vol. 9, p. 24699. https://doi.org/10.1039/c9ra04358f

    Article  CAS  Google Scholar 

  37. Hagar, M., Chaieb, K., Parveen, S., Ahmed, H.A., and Alnoman, R.B., J. Mol. Struct., 2020, vol. 1199, article ID 126926. https://doi.org/10.1016/j.molstruc.2019.126926

  38. Ferrara, N. and Adamis, A.P., Nat. Rev. Drug Discovery, 2016, vol. 15, p. 385. https://doi.org/10.1038/nrd.2015.17

    Article  CAS  Google Scholar 

  39. Fedorov, O., Müller, S., and Knapp, S., Nat. Chem. Biol., 2010, vol. 6, p. 166. https://doi.org/10.1038/nchembio.297

    Article  CAS  Google Scholar 

  40. Carmeliet, P., Nat. Med., 2003, vol. 9, p. 653. https://doi.org/10.1038/nm0603-653

    Article  CAS  Google Scholar 

  41. Zhang, H.Q., Gong, F.H., Li, C.G., Zhang, C., Wang, Y.J., Xu, Y.G., and Sun, L.P., Eur. J. Med. Chem., 2016, vol. 109, p. 371. https://doi.org/10.1016/j.ejmech.2015.12.032

    Article  CAS  Google Scholar 

  42. Lintnerová, L., García-Caballero, M., Gregáň, F., Melicherčík, M., Quesada, A.R., Dobiaš, J., Lác, J., Sališová, M., and Boháč, A., Eur. J. Med. Chem., 2014, vol. 72, p. 146. https://doi.org/10.1016/j.ejmech.2013.11.023

    Article  CAS  Google Scholar 

  43. Zuccotto, F., Ardini, E., Casale, E., and Angiolini, M., J. Med. Chem., 2010, vol. 53, p. 2681. https://doi.org/10.1021/jm901443h

    Article  CAS  Google Scholar 

  44. Schrödinger Release 2017-4: Maestro, Schrödinger, LLC, New York NY, 2017.

  45. Banks, W.A., BMC Neurol., 2009, vol. 9, p. S3. https://doi.org/10.1186/1471-2377-9-S1-S3

Download references

ACKNOWLEDGMENTS

S. Parveen is grateful to Jamia Hamdard for “JH Silver Jubilee Post-Doctoral Fellowship-2016.”

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: A. Husain; methodology: A. Husain, M. Bhutani, S.A. Khan; formal analysis and investigation: S. Parveen, M. Bhutani, A. Iqbal, A. Ahmad; original draft preparation: S. Parveen, A. Husain; review and editing: S.A. Khan, A. Ahmad; resources: A. Husain; supervision: A. Husain.

Corresponding author

Correspondence to S. Parveen.

Ethics declarations

The authors confirm that this article content has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Husain, A., Bhutani, M., Parveen, S. et al. Design, Synthesis, In Vitro Cytotoxicity, ADME Prediction, and Molecular Docking Study of Benzimidazole-Linked Pyrrolone and N-Benzylpyrrolone Derivatives. Russ J Org Chem 58, 1438–1450 (2022). https://doi.org/10.1134/S1070428022100098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428022100098

Keywords:

Navigation