Skip to main content
Log in

Synthesis and Supramolecular Properties of Water-soluble Pillar[5]arenes Containig Amino Acid Residues

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Novel water-soluble pillar[5]arenes containing both quaternary ammonium fragments and amino acid residues (Gly, l-Ala) were synthesized in good yields. Two-dimensional 1H–1H NOESY NMR spectroscopy and IR spectroscopy showed that the synthesized pillar[5]arenes tend to form different types of β-structures. The macrocycle containing glycine residues is characterized by the formation of β-sheets, while the pillar[5]arene containing L-alanine residues forms β-loops. Dynamic light scattering and transmission electron microscopy showed that the pillar[5]arene containing glycine fragments formed nanosized associates with an average hydrodynamic diameter of 150 nm, which was explained by a more compact packing of the substituents in this macrocycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Makam, P. and Gazit, E., Chem. Soc. Rev., 2018, vol. 47, p. 3406. https://doi.org/10.1039/c7cs00827a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Surin, M. and Ulrich, S., ChemistryOpen, 2020, vol. 9, p. 480. https://doi.org/10.1002/open.202000013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chakraborty, P. and Gazit, E., ChemNanoMat, 2018, vol. 4, p. 730. https://doi.org/10.1002/cnma.201800147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhao, Y., Yang, W., Chen, C., Wang, J., Zhang, L., and Xu, H., Curr. Opin. Colloid. In., 2018, vol. 35, p. 112. https://doi.org/10.1016/j.cocis.2018.02.009

    Article  CAS  Google Scholar 

  5. Song, Z., Chen, X., You, X., Huang, K., Dhinakar, A., Gu, Z., and Wu, J., Biomater. Sci., 2017, vol. 5, p. 2369. https://doi.org/10.1039/c7bm00730b

    Article  CAS  PubMed  Google Scholar 

  6. Pan, J., Chen, W., Mab, Y., and Pan, G., Chem. Soc. Rev., 2018, vol. 47, p. 5574. https://doi.org/10.1039/C7CS00854F

    Article  CAS  PubMed  Google Scholar 

  7. Nazarova, A., Shurpik, D., Padnya, P., Mukhametzyanov, T., Cragg, P., and Stoikov, I., Int. J. Mol. Sci., 2020, vol. 21, p. 7206. https://doi.org/10.3390/ijms21197206

    Article  CAS  PubMed Central  Google Scholar 

  8. Ogoshi, T., Kanai, S., Fujinami, S., Yamagishi, T.-A., and Nakamoto, Y., J. Am. Chem. Soc., 2008, vol. 130, p. 5022. https://doi.org/10.1021/ja711260m

    Article  CAS  PubMed  Google Scholar 

  9. Yu, G., Xue, M., Zhang, Z., Li, J., Han, C., and Huang, F., J. Am. Chem. Soc., 2012, vol. 134, p. 13248. https://doi.org/10.1021/ja306399f

    Article  CAS  PubMed  Google Scholar 

  10. Gragg, P. and Sharma, K., Chem. Soc. Rev., 2012, vol. 41, p. 597. https://doi.org/10.1039/C1CS15164A

    Article  Google Scholar 

  11. Nazarova, A., Khannanov, A., Boldyrev, A., Yakimova, L., and Stoikov, I., Int. J. Mol. Sci., 2021, vol. 22, p. 6038. https://doi.org/10.3390/ijms22116038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kaverzneva, E.D., Zvorykina, V.K., and Kiseleva, V.V., Bull. Acad. Sci. USSR Div. Chem. Sci., 1970, vol. 10, p. 2157. https://doi.org/10.1007/BF00861489

    Article  Google Scholar 

  13. Ogoshi, T., Kanai, S., Fujinami, S., Yamagishi, T.A., and Nakamoto, Y., J. Am. Chem. Soc., 2008, vol. 130, p. 5022. https://doi.org/10.1021/ja711260m

    Article  CAS  PubMed  Google Scholar 

  14. Li, C., Shu, X., Li, J., Chen, S., Han, K., Xu, M., and Jia, X., J. Org. Chem., 2011, vol. 76, p. 8458. https://doi.org/10.1021/jo201185e

    Article  CAS  PubMed  Google Scholar 

  15. Shurpik, D.N., Sevastyanov, D.A., Zelenikhin, P.V., Padnya, P.L., Evtugyn, V.G., Osin, Y.N., and Stoikov, I.I., Beilstein J. Nanotechnol., 2020, vol. 11, p. 421. https://doi.org/10.3762/bjnano.11.33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bera, S., Mondal, S., Rencus-Lazar, S., and Gazit, E., Acc. Chem. Res., 2018, vol. 51, p. 2187. https://doi.org/10.1021/acs.accounts.8b00131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bhattacharjee, S., J. Control. Release, 2016, vol. 235, p. 337. https://doi.org/10.1016/j.jconrel.2016.06.017

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was financially supported by the Russian Science Foundation (project no. 18-73-10094).

The registration of mass spectra was funded from the budget of the Priority-2030 Strategic Academic Leadership Program, Kazan (Volga Region) Federal University.

The study of aggregation properties was funded from the grant of the President of the Russian Federation for state support of the young Russian PhD scientists (grant no. MK-723.2021.1.3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Nazarova, L. S. Yakimova or I. I. Stoikov.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2022, Vol. 58, No. 8, pp. 832–840 https://doi.org/10.31857/S0514749222080079.

In memory of Academician A.I. Konovalov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarova, A.A., Sultanaev, V.R., Yakimova, L.S. et al. Synthesis and Supramolecular Properties of Water-soluble Pillar[5]arenes Containig Amino Acid Residues. Russ J Org Chem 58, 1115–1122 (2022). https://doi.org/10.1134/S1070428022080073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428022080073

Keywords:

Navigation