Skip to main content
Log in

One-Pot Three-Component Synthesis of a Series of 2-Amino-4-(4-oxo-4H-chromen-3-yl)-5-(2,2,2-trifluoroacetyl)-6-(trifluoromethyl)-4H-pyrans and 2-Amino-4-(4-oxo-4H-chromen-3-yl)-5-(thiophene-2-carbonyl)-6-(trifluoromethyl)-4H-pyrans as Promising Anticancer Agents

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Novel functionalized 2-amino-4-(4-oxo-4H-chromen-3-yl)-5-(2,2,2-trifluoroacetyl)-6-(trifluoro­methyl)-4H-pyrans and 2-amino-4-(4-oxo-4H-chromen-3-yl)-5-(thiophene-2-carbonyl)-6-(trifluoromethyl)-4H-pyrans have been synthesized by one-pot three-component reaction of 4-oxo-4H-chromene-3-carbaldehyde with three active methylene cyanoacetic acid derivatives and 1,1,1,5,5,5-hexafluoropentane-2,4-dione or 1,1,1-tri­fluoro-5-(thiophen-2-yl)pentane-2,4-dione in distilled water at 60–70°C without a catalyst. The described methodology displayed excellent yields and simple workup procedure. The synthesized compounds were assessed for their in vitro anticancer activity against human breast cancer (MCF-7), liver cancer (HepG-2), and colon cancer cell lines (HCT-116). One of the compounds, 2-amino-4-(4-oxo-4H-chromen-3-yl)-5-(2,2,2-trifluoroacetyl)-6-(trifluoromethyl)-4H-pyran-3-carbonitrile, exhibited excellent anticancer activity versus all tested cancer cell lines with IC50 values ranging from 0.7 to 1.4 μg/mL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Malesev, D. and Kuntic, V., J. Serb. Chem. Soc., 2007, vol. 72, p. 921. https://doi.org/10.2298/jsc0710921m

    Article  CAS  Google Scholar 

  2. Horton, D.A., Bourne, G.T., and Smythe, M.L., Chem. Rev., 2003, vol. 103, p. 893. https://doi.org/10.1021/cr020033s

    Article  CAS  PubMed  Google Scholar 

  3. Gaspar, A., Matos, M.J., Garrido, J., Uriarte, E., and Borges, F., Chem. Rev., 2014, vol. 114, p. 4960. https://doi.org/10.1021/cr400265z

    Article  CAS  PubMed  Google Scholar 

  4. Keri, R.S., Budagumpi, S., Pai, R.K., and Bala­krishna, R.G., Eur. J. Med. Chem., 2014, vol. 78, p. 340. https://doi.org/10.1016/j.ejmech.2014.03.047

    Article  CAS  PubMed  Google Scholar 

  5. Pratap, R. and Ram, V.J., Tetrahedron, 2017, vol. 73, p. 2529. https://doi.org/10.1016/j.tet.2017.02.028

  6. Arbabi, H.A., Soltani, S.S., Salehi, H., Rezazadeh, S., Zonouzi, A., and Toosibashi, M., J. Chem. Res., 2018, vol. 42, p. 68. https://doi.org/10.3184/174751918x15177611816526

    Article  CAS  Google Scholar 

  7. Ramtekkar, R., Kumarvel, K., Vasuki, G., Sekar, K., and Krishna, R., Lett. Drug Des. Discovery, 2009, vol. 6, p. 579. https://doi.org/10.2174/157018009789353455

    Article  CAS  Google Scholar 

  8. Batran, R.Z., Dawood, D.H., El-Seginy, S.A., Maher, T.J., Gugnani, K.S., and Rondon-Ortiz, A.N., Bioorg. Chem., 2017, vol. 75, p. 274. https://doi.org/10.1016/j.bioorg.2017.09.017

    Article  CAS  PubMed  Google Scholar 

  9. Ouf, N.H., Selim, Y.A., Sakran, M.I., and Badr Eldin, A.S., Med. Chem. Res., 2014, vol. 23, p. 1180. https://doi.org/10.1007/s00044-013-0724-z

    Article  CAS  Google Scholar 

  10. Solovyev, P.A., Fesenko, A.A., and Shutalev, A.D., J. Fluorine Chem., 2016, vol. 182, p. 28. https://doi.org/10.1016/j.jfluchem.2015.11.008

    Article  CAS  Google Scholar 

  11. Nenajdenko, V., Fluorine in Heterocyclic Chemistry: 5-Membered Heterocycles and Macrocycles, Nenajden­ko, V., Ed., New York: Springer, 2014, vol. 1. https://doi.org/10.1007/978-3-319-04346-3

  12. Joule, J.A., Prog. Heterocycl. Chem., 2020, vol. 31, p. 117. https://doi.org/10.1016/B978-0-12-819962-6.00005-1

    Article  Google Scholar 

  13. Singla, N., Singh, G., Bhatia, R., Kumar, A., Kaur, R., and Kaur, S., ChemistrySelect, 2020, vol. 5, p. 3835. https://doi.org/10.1002/slct.202000191

    Article  CAS  Google Scholar 

  14. Rahmati, A. and Pashmforoush, N., J. Iran. Chem. Soc., 2015, vol. 12, p. 993. https://doi.org/10.1007/s13738-014-0562-z

    Article  CAS  Google Scholar 

  15. Shekouhya, M. and Khalafi-Nezhad, A., Green Chem., 2015, vol. 17, p. 4815. https://doi.org/10.1039/c5gc01448d

    Article  Google Scholar 

  16. Ali, T.E., Ali, M.M., Abdel-Kariem, S.M., and Ahmed, M.M., Synth. Commun., 2017, vol. 47, p. 1458. https://doi.org/10.1080/00397911.2017.1332224

    Article  CAS  Google Scholar 

  17. Ali, T.E., Assiri, M.A., El-Shaaer, H.M., Fouda, A.M., Hassan, M.M., and Hassanin, N.M., Heterocycles, 2019, vol. 98, p. 681. https://doi.org/10.3987/COM-19-14062

    Article  CAS  Google Scholar 

  18. Ali, T.E., Assiri, M.A., Hassanin, N.M., Yahia, I.S., and Hussien, M.S.A., J. Heterocycl. Chem., 2019, vol. 56, p. 1684. https://doi.org/10.1002/jhet.3550

    Article  CAS  Google Scholar 

  19. Assiri, M.A., Ali, T.E., Ibrahim, M.A., Badran, A., and Yahia, I.S., Polycyclic Aromat. Compd., 2021, vol 41, p. 1357. https://doi.org/10.1080/10406638.2019.1678181

  20. Ali, T.E., Assiri, M.A., Ibrahim, M.A., and Yahia, I.S., Russ. J. Org. Chem., 2020, vol. 56, p. 845. https://doi.org/10.1134/S1070428020050188

    Article  CAS  Google Scholar 

  21. Firouzabadi, H., Iranpoor, N., and Gholinejad, M., Tetrahedron, 2009, vol. 65, p. 7079. https://doi.org/10.1016/j.tet.2009.06.081

    Article  CAS  Google Scholar 

  22. Elinson, M.N., Nasybullin, R.F., Ryzhkov, F.V., and Egorov, M.P., C. R. Chim., 2014, vol. 17, p. 437. https://doi.org/10.1016/j.crci.2013.08.002

    Article  CAS  Google Scholar 

  23. Wang, G., Chen, M., Qiu, J., Xie, Z., and Cao, A., Bioorg. Med. Chem. Lett., 2018, vol. 28, pp. 113. https://doi.org/10.1016/j.bmcl.2017.11.047

  24. Sosnovskikh, V.Y. and Rgashev, I.R.A., Tetrahedron Lett., 2007, vol. 48, p. 7436. https://doi.org/10.1016/j.tetlet.2007.08.078

    Article  CAS  Google Scholar 

  25. Abd El Aleem, M. and El-Remaily, A.A., Tetrahedron, 2014, vol. 70, p. 2971. https://doi.org/10.1016/j.tet.2014.03.024

    Article  CAS  Google Scholar 

  26. Zhang, Z., Han, J., and Zhu, S., Tetrahedron, 2011, vol. 67, p. 8496. https://doi.org/10.1016/j.tet.2011.09.007

    Article  CAS  Google Scholar 

  27. Marjani, A.P., Khalafy, J., Arlan, F.M., and Eyni, E., Arkivoc, 2019, vol. 2019, part (v), p. 1. https://doi.org/10.24820/ark.5550190.p010.705

    Article  CAS  Google Scholar 

  28. Oma, A. and Ablajan, K., Green Chem. Lett. Rev., 2019, vol. 12, p. 1. https://doi.org/10.1080/17518253.2018.1556744

    Article  CAS  Google Scholar 

  29. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J.T., Bokesch, H., Kenney, S., and Boyd, M.R., J. Natl. Cancer Inst., 1990, vol. 82, p. 1107. https://doi.org/10.1093/jnci/82.13.1107

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number RGP.2/8/43.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Ali.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, T.E., Assiri, M.A., Shati, A.A. et al. One-Pot Three-Component Synthesis of a Series of 2-Amino-4-(4-oxo-4H-chromen-3-yl)-5-(2,2,2-trifluoroacetyl)-6-(trifluoromethyl)-4H-pyrans and 2-Amino-4-(4-oxo-4H-chromen-3-yl)-5-(thiophene-2-carbonyl)-6-(trifluoromethyl)-4H-pyrans as Promising Anticancer Agents. Russ J Org Chem 58, 584–591 (2022). https://doi.org/10.1134/S1070428022040170

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428022040170

Keywords:

Navigation