Skip to main content
Log in

Quantum Chemical Study of Mechanisms of Organic Reactions: X. Reaction of Dipotassium Propane-1,3-bis(thiolate) with 1,3-Dichloropropene in the System Hydrazine Hydrate–KOH

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

A mechanism has been proposed for the reaction of 1,3-dichloropropene with dipotassium propane-1,3-bis(dithiolate) in the system hydrazine hydrate–potassium hydroxide on the basis of DFT quantum chemical calculations at the B3LYP/6-311++G(d,p) level of theory. The first stage of this reaction has been found to be nucleophilic substitution of one chlorine atom of 1,3-dichloropropene linked to the sp3-carbon atom by the sulfur atom of propane-1,3-bis(thiolate) to give the corresponding monosubstitution product. Further transformations of the latter could lead to the formation of six-, seven-, and eight-membered sulfur heterocycles, as well as of a linear structure as a result of reaction of the monosubstitution product with the second 1,3-dichloropropene molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Scheme
Scheme
Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Chirkina, E.A., Larina, L.I., and Komarova, T.N., J. Organomet. Chem., 2020, vol. 915, article ID 121242. https://doi.org/10.1016/j.jorganchem.2020.121242

  2. Semchikov, Yu.D., Vysokomolekulyarnye soedineniya (High-Molecular-Weight Compounds), Moscow: Akademiya, 2003.

  3. Andersen, N.H., Duffy, P.F., Denniston, A.D., and Grotjahn, D.B., Tetrahedron Lett., 1978, vol. 19, no. 45, p. 4315. https://doi.org/10.1016/S0040-4039(01)95212-8

    Article  Google Scholar 

  4. Krivonogov, V.P., Afzaletdinova, N.G., Khisamutdinov, R.A., Spirikhin, L.V., and Murinov, Yu.I., Zh. Prikl. Khim., 2000, vol. 73, p. 976.

    CAS  Google Scholar 

  5. Levanova, E.P., Grabelnykh, V.A., Vahrina, V.S., Albanov, A.I., Klyba, L.V., Russavskaya, N.V., Korchevin, N.A., and Rozentsveig, I.B., J. Sulfur Chem., 2014, vol. 35, p. 179. https://doi.org/10.1080/17415993.2013.849704

    Article  CAS  Google Scholar 

  6. Khanum, F., Anilacumar, K.R., and Viswanathan, K.R., Crit. Rev. Food Sci., 2004, vol. 44, p. 479. https://doi.org/10.1080/10408690490886700

    Article  CAS  Google Scholar 

  7. Shin, H.A., Cha, Y.Y., Park, M.S., Kim, J.M., and Lim, Y.C., Oral Oncol., 2010, vol. 46, p. 15. https://doi.org/10.1016/j.oraloncology.2009.10.012

    Article  CAS  Google Scholar 

  8. Gries, R., Cambell, C., Khaskin, G., Avelino, N., and Gries, G., Int. Patent Appl. no. WO 2008116321 A1; Chem. Abstr., 2008, vol. 149, no. 396145

  9. Ilie, D.P., Nicole, L.B., Stankovie, M.Z., Stanojevie, L.P., and Cakie, M.D., Facta Univ., Ser.: Phys., Chem. Technol., 2011, vol. 9, p. 9. https://doi.org/10.2298/FUPCT1101009I

    Article  CAS  Google Scholar 

  10. McGarrigle, E.M., Myers, E.L., Illa, O., Shaw, M.A., Riches, S.L., and Aggarwal, V.K., Chem. Rev., 2007, vol. 107, p. 5841. https://doi.org/10.1021/cr068402y

    Article  CAS  PubMed  Google Scholar 

  11. Park, H.Y., Kloxin, C.J., Scon, T.F., and Bowman, C.N., Macromolecules, 2010, vol. 43, p. 10188. https://doi.org/10.1021/MA1020209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chirkina, E.A., Korchevin, N.A., Rozentsveig, I.B., and Krivdin, L.B., Russ J. Org. Chem., 2019, vol. 55, p. 662. https://doi.org/10.1134/S1070428019050130

    Article  CAS  Google Scholar 

  13. Chirkina, E.A., Krivdin, L.B., Levanova, E.P., Korchevin, N.A., and Rozentsveig, I.B., Russ J. Org. Chem., 2018, vol. 53, p. 1446. https://doi.org/10.1134/S1070428018100020

    Article  Google Scholar 

  14. Chirkina, E.A., Levanova, E.P., and Krivdin, L.B., Russ J. Org. Chem., 2017, vol. 53, p. 986. https://doi.org/10.1134/S1070428017070053

    Article  CAS  Google Scholar 

  15. Levanova, E.P., Nikonova, B.S., Grabel’nykh, V.A., Russavskaya, N.V., Albanov, A.I., Rosentsveig, I.B., and Korchevin, N.A., Russ. J. Org. Chem., 2016, vol. 52, p. 615. https://doi.org/10.1134/S1070428016050018

    Article  CAS  Google Scholar 

  16. Levanova, E.P., Nikonova, B.S., Albanov, A.I., Rosentsveig, I.B., and Korchevin, N.A., Russ. J. Org. Chem., 2016, vol. 52, p. 1535. https://doi.org/10.1134/S1070428016100316

    Article  CAS  Google Scholar 

  17. Laikov, D.N. and Ustynyuk, Yu.A., Russ. Chem. Bull., Int. Ed., 2005, vol. 54, p. 820. https://doi.org/10.1007/s11172-005-0329-x

    Article  CAS  Google Scholar 

  18. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Jr., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J., Gaussian 09, Revision C.01, Wallingford, CT: Gaussian, 2009.

  19. Tuckerman, M.E., Berne, B.J., and Martyna, G.J., J. Chem. Phys., 1991, vol. 94, p. 6811. https://doi.org/10.1063/1.460259

    Article  CAS  Google Scholar 

  20. González, C. and Schlegel, H.B., J. Phys. Chem., 1990, vol. 94, p. 5523. https://doi.org/10.1021/j100377a021

    Article  Google Scholar 

  21. González, C. and Schlegel, H.B., J. Chem. Phys., 1991, vol. 95, p. 5853. https://doi.org/10.1063/1.461606

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

All calculations were performed on the HPC cluster “Academician V.M. Matrosov” at the Irkutsk Supercomputer Center (http://hpc.icc.ru) and at the Favorsky Irkutsk Institute of Chemistry using the facilities of the Baikal Analytical Center (https://irkinstchem.ru/index.php/ru/struktura-instituta/backp).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Chirkina.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2021, Vol. 57, No. 7, pp. 973–986 https://doi.org/10.31857/S0514749221070077.

For communication IX, see [1].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirkina, E.A., Krivdin, L.B., Nikonova, V.S. et al. Quantum Chemical Study of Mechanisms of Organic Reactions: X. Reaction of Dipotassium Propane-1,3-bis(thiolate) with 1,3-Dichloropropene in the System Hydrazine Hydrate–KOH. Russ J Org Chem 57, 1073–1083 (2021). https://doi.org/10.1134/S1070428021070071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428021070071

Keywords:

Navigation