Skip to main content
Log in

Nucleophilic Opening of the Oxirane Ring with Tetraalkylammonium Salt Anions in the Presence of Proton Donors

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The behavior of tetraethylammonium salts in nucleophilic opening of the oxirane ring of epichlorohydrin (ECH) in the system ECH–proton donor–Et4N+ X, where proton donor is benzoic acid or 4-nitrophenol and X = PhCOO or NO3, was studied by the kinetic and spectrophotometric methods. The order of the reaction in tetraethylammonium salt, benzoic acid, and 4-nitrophenol was estimated as first, zero, and less than zero, respectively. The mechanism of nucleophilic opening of the oxirane ring of ECH was elucidated on the basis of monitoring of the accumulation of 4-nitrophenoxide ion in the system ECH–4-nitrophenol–Et4NX upon variation of the initial concentrations of both tetraethylammonium salt and proton donor (4-nitrophenol) itself. The anion X of the initial tetraethylammonium salt was found to be irreversibly consumed as a result of its attack on the oxirane ring with participation of the proton donor, which led to generation of tetraethylammo­nium 4-nitrophenoxide, and the latter catalyzed the subsequent formation of the final product. An increase in the concentration of 4-nitrophenol was accompanied by reduction of both the rate of formation of 4-nitrophenoxide ion and the overall reaction rate, which corresponds to a mechanism involving nucleophilic attack of the anion X on the oxirane ring that is not activated by the proton donor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme
Scheme
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Scheme

Similar content being viewed by others

REFERENCES

  1. Blank, W.J., He, Z.A., and Picci, M., J. Coat. Technol., 2002, vol. 74, p. 33. https://doi.org/10.1007/BF02720158

    Article  CAS  Google Scholar 

  2. Yan, Z., Deng, J., Chen, Y., and Luo, G., Ind. Eng. Chem. Res., 2020, vol. 59, p. 19168. https://doi.org/10.1021/acs.iecr.0c02906

    Article  CAS  Google Scholar 

  3. Epoxy Polymers: New Materials and Innovations, Pascault, J.P. and Williams, R.J.J., Eds., Weinheim: Wiley, 2009.

  4. Arslan, M., Sanyal, R., and Sanyal, A., Polym. Chem., 2020, vol. 11, p. 615. https://doi.org/10.1039/C9PY01679A

    Article  CAS  Google Scholar 

  5. Zhou, H., Steinhilber, D., Schlaad, H., Sisson, A.L., and Haag, R., React. Funct. Polym., 2011, vol. 71, p. 356. https://doi.org/10.1016/j.reactfunctpolym.2010.11.018

    Article  CAS  Google Scholar 

  6. Subramanian, S., Park, J., Byun, J., Jung, Y., and Yavuz, C.T., ACS Appl. Mater. Interfaces, 2018, vol. 10, p. 9478. https://doi.org/10.1021/acsami.8b00485

    Article  CAS  PubMed  Google Scholar 

  7. Singh, G.S., Mollet, K., D’Hooghe, M., and De Kimpe, N., Chem. Rev., 2013, vol. 113, p. 1441. https://doi.org/10.1021/cr3003455

    Article  CAS  PubMed  Google Scholar 

  8. Usachev, V.V., Cand. Sci. (Chem.) Dissertation, Donetsk, 2008.

  9. Kucharski, M. and Chmiel-Szukiewicz, E., J. Appl. Polym. Sci., 2000, vol. 78, p. 2081. https://doi.org/10.1002/1097-4628(20001213)78:12

    Article  CAS  Google Scholar 

  10. Shved, E.N., Usachov, V.V., and Kozorezova, E.I., Ukr. Khim. Zh., 2007, vol. 73, p. 113.

    CAS  Google Scholar 

  11. Shved, E.N., Petrenko, E.N., and Pozhidaev, M.A., Russ. J. Org. Chem., 2001, vol. 37, p. 1723. https://doi.org/10.1023/A:1013922017887

    Article  CAS  Google Scholar 

  12. Rafizadeh, M., Ghasemi, H., and Haddadi-Asl, V., Chin. J. Polym. Sci., 2006, vol. 24, p. 599. https://doi.org/10.1142/S0256767906001709

    Article  CAS  Google Scholar 

  13. Schneider, C. and Brauner, J., Eur. J. Org. Chem., 2001, vol. 2001, no. 23, p. 4445. https://doi.org/10.1002/1099-0690(200112)2001:23

    Article  Google Scholar 

  14. Bukowska, A., Guskov, A.K., Makarov, M.K., Rokaszewski, E., and Svets, V.F., J. Chem. Technol. Biotechnol., 1995, vol. 63, p. 374. https://doi.org/10.1002/jctb.280630411

    Article  CAS  Google Scholar 

  15. Usachev, V.V. and Shved, E.N., Mendeleev Commun., 2002, vol. 12, p. 113. https://doi.org/10.1070/MC2002v012n03ABEH001586

    Article  CAS  Google Scholar 

  16. Sinel’nikova, M.A. and Shved, E.N., Russ. J. Org. Chem., 2014, vol. 50, p. 332. https://doi.org/10.1134/S107042801403004X

    Article  CAS  Google Scholar 

  17. Xia, X.Y., Sun, W., He, W., Feng, Y., Zhan, L., and Luo, Y., Russ. J. Org. Chem., 2020, vol. 56, p. 877. https://doi.org/10.1134/S107042802005022X

    Article  CAS  Google Scholar 

  18. Tanaka, Y., Okada, A., and Suzuki, M., Can. J. Chem., 1970, vol. 48, p. 3258. https://doi.org/10.1139/v70-547

    Article  CAS  Google Scholar 

  19. Sorokin, M.F. and Gershanova, E.L., Kinet. Katal., 1967, vol. 8, p. 512.

    CAS  Google Scholar 

  20. Lubczak, J., Lubczak, R., and Naróg, D., Open J. Phys. Chem., 2018, vol. 8, p. 67. https://doi.org/10.4236/ojpc.2018.83005

    Article  CAS  Google Scholar 

  21. Shvets, V.F. and Tyukova, O.A., Zh. Org. Khim., 1971, vol. 7, p. 1847.

    CAS  Google Scholar 

  22. Sorokin, M.F. and Shode, L.G., Zh. Org. Khim., 1968, vol. 4, p. 666.

    CAS  Google Scholar 

  23. Maitre, C., Ganachaud, F., Ferreira, O., Lutz, J.F., Paintoux, Y., and Hemery, P., Macromolecules, 2000, vol. 33, p. 7730. https://doi.org/10.1021/ma0007132

    Article  CAS  Google Scholar 

  24. Bobbink, F.D, Vasilyev, D., Hulla, M., Chamam, S., Menoud, F., Laurenczy, G., and Dyson, P.J., ACS Catal., 2018, vol. 8, p. 2589. https://doi.org/10.1021/acscatal.7b04389

    Article  CAS  Google Scholar 

  25. Tsutsumi, Y., Yamakawa, K., Yoshida, M., Ema, T., and Sakai, T., Org. Lett., 2010, vol. 12, p. 5728. https://doi.org/10.1021/ol102539x

    Article  CAS  PubMed  Google Scholar 

  26. Bakhtin, S.G., Shved, E.N., and Bespal’ko, Y.N., Kinet. Catal., 2016, vol. 57, p. 47. https://doi.org/10.1134/S002315841601002X

    Article  CAS  Google Scholar 

  27. Bakhtin, S., Bespal’ko, Y., and Shved, E., React. Kinet. Mech. Catal., 2016, vol. 119, p. 139. https://doi.org/10.1007/s11144-016-1051-4

    Article  CAS  Google Scholar 

  28. Bakhtin, S., Shved, E., and Bespal’ko, Y., J. Phys. Org. Chem., 2017, vol. 30, article ID e3717. https://doi.org/10.1002/poc.3717

  29. Bakhtin, S., Shved, E., Bespalko, Y., Tyurina, T., and Palchykov, V., J. Phys. Org. Chem., 2020, vol. 33, article ID e4071. https://doi.org/10.1002/poc.4071

  30. Bakhtin, S., Shved, E., Bespal’ko, Y., and Stepanova, Y., Prog. React. Kinet. Mech., 2018, vol. 43, p. 121. https://doi.org/10.3184/146867818X15161889114501

    Article  CAS  Google Scholar 

  31. Ioffe, B.V., Kostikov, R.R., and Razin, V.V., Fizicheskie metody opredeleniya stroeniya organicheskikh soedine­nii (Physical Methods of Structure Determination of Organic Compounds), Moscow: Vysshaya Shkola, 1984.

  32. Shields, G.C. and Seybold, P.G., Computational Ap­proaches for the Prediction of pKa Values, Boca Raton: CRC Press, 2013.

  33. Zinchenko, A.V., Izotova, S.G., and Rumyantsev, A.V., Novyi spravochnik khimika i tekhnologa. Khimicheskoe ravnovesie. Svoistva rastvorov (New Chemist’s and Technologist’s Handbook. Chemical Equilibrium. Prop­erties of Solution), St. Petersburg: Professional, 2004.

  34. Yutilova, K., Bespal’ko, Y., and Shved, E., Croat. Chem. Acta, 2019, vol. 92, p. 357. https://doi.org/10.5562/cca3505

    Article  CAS  Google Scholar 

  35. Amarego, W.L.F. and Chai, C.L.L., Purification of Laboratory Chemicals, Amsterdam: Elsevier, 2003, 5th ed.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Bakhtin.

Ethics declarations

The authors declare the absence of conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2021, Vol. 57, No. 4, pp. 497–506 https://doi.org/10.31857/S0514749221040042.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhtin, S.G., Shved, E.N., Sinelnikova, M.A. et al. Nucleophilic Opening of the Oxirane Ring with Tetraalkylammonium Salt Anions in the Presence of Proton Donors. Russ J Org Chem 57, 524–531 (2021). https://doi.org/10.1134/S1070428021040047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428021040047

Keywords:

Navigation