Skip to main content
Log in

Reactivity of Inorganic α-Nucleophiles in Acyl Transfer Processes in Water and Surfactant Micelles: III. Systems Based on Dimeric Cationic Imidazolium Surfactants in Alkaline Hydrolysis of Ethyl 4-Nitrophenyl Ethylphosphonate

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of alkaline hydrolysis of ethyl 4-nitrophenyl ethylphosphonate in micelles formed by cationic dimeric imidazolium surfactants [AlkIm+(CH2)mIm+Alk]·2Br (where Alk = C16H33–C10H21, m = 2, 3, 4) have been studied. The rate of the reaction in the micellar pseudophase depends on the efficiency of solubilization of the reactants, and the effect of reactant concentrating increases in parallel with the length of the alkyl “tail.” Micellar microenvironment is an important factor responsible for the nucleophilicity of hydroxide ion. The observed acceleration of alkaline hydrolysis of ethyl 4-nitrophenyl ethylphosphonate (micellar catalysis) is primarily related to these two factors. An obvious superiority of dimeric surfactants to monomeric ones is that equal reaction rates are attained at 1–2 orders of magnitude lower concentrations of the former.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Fig. 1.
Scheme
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

Notes

  1. Ethyl 4-nitrophenyl ethylphosphonate can be regarded as a model organophosphorus pollutant.

  2. Dimeric tetraalkylammonium surfactants are commonly designat­ed as Cnm–Cn, where n is the number of carbon atoms in the alkyl tail, and m is the number of methylene units in the spacer.

REFERENCES

  1. Zubareva, T.M., Belousova, I.A., Prokop’eva, T.M., Gaidash, T.S., Razumova, N.G., Panchenko, B.V., and Mikhailov, V.A., Russ. J. Org. Chem. 2020, vol. 56, p. 53. https://doi.org/10.1134/S1070428020010091

  2. Rosen, M.J. and Kunjappu, J.T., Surfactants and Interfacial Phenomena, Hoboken: Wiley, 2012, 4th ed. https://doi.org/10.1002/9781118228920

  3. Khan, M.N., Micellar Catalysis, Boca Raton: CRC Press, 2006. https://doi.org/10.1201/9781420015843

  4. Vantomme, G. and Meijer, E.W., Science, 2019, vol. 363, p. 1396. https://doi.org/10.1126/science.aav4677

    Article  CAS  PubMed  Google Scholar 

  5. Deraedt, C. and Astruc, D., Coord. Chem. Rev., 2016, vol. 324, p. 106. https://doi.org/10.1016/j.ccr.2016.07.007

    Article  CAS  Google Scholar 

  6. Leclercq, L., Douyère, G., and Nardello-Rataj, V., Catalysts, 2019, vol. 9, p. 163. https://doi.org/10.3390/catal9020163

    Article  CAS  Google Scholar 

  7. Geng, Y., Romsted, L.S., and Menger, F., J. Am. Chem. Soc., 2006, vol. 128, p. 492. https://doi.org/10.1021/ja056807e

    Article  CAS  PubMed  Google Scholar 

  8. Li, H.Q., Yu, C.C., Chen, R., Li, J., and Li, J.X., Colloids Surf. A, 2012, vol. 395, p. 116. https://doi.org/10.1016/j.colsurfa.2011.12.014

    Article  CAS  Google Scholar 

  9. Voloshina, A.D., Gumerova, S.K., Sapunova, A.S., Kulik, N.V., Mirgorodskaya, A.B., Kotenko, A.A., Prokopyeva, T.M., Mikhailov, V.A., Zakharova, L.Ya, and Sinyashin, O.G., Biochim. Biophys. Acta, Gen. Subj., 2020, vol. 1864, article no. 129728. https://doi.org/10.1016/j.bbagen.2020.129728

  10. Chen, Q.R., Han, L., Gao, C.B., and Che, S.N., Microporous Mesoporous Mater., 2010, vol. 128, p. 203. https://doi.org/10.1016/j.micromeso.2009.08.024

    Article  CAS  Google Scholar 

  11. Aguado, J., Escola, J.M., and Castro, M.C., Microporous Mesoporous Mater., 2010, vol. 128, p. 48. https://doi.org/10.1016/j.micromeso.2009.08.002

    Article  CAS  Google Scholar 

  12. Ren, C., Wang, F., Zhang, Z., Nie, H., Li, N., and Cui, M., Colloids Surf. A, 2015, vol. 467, p. 1. https://doi.org/10.1016/j.colsurfa.2014.11.031

    Article  CAS  Google Scholar 

  13. Bhadani, A., Misono, T., Singh, S., Sakai, K., Sakai, H., and Abe, M., Adv. Colloid Interface Sci., 2016, vol. 231, p. 36. https://doi.org/10.1016/j.cis.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  14. Sadovskii, Yu., Solomoichenko, T.N., Turovskaya, M.K., Kapitanov, I.V., Piskunova, Zh.P., Kostrikin, M.K., Prokop’eva, T.M., and Popov, A.F., Theor. Exp. Chem., 2012, vol. 48, p. 122. https://doi.org/10.1007/s11237-012-9249-7

    Article  CAS  Google Scholar 

  15. Kapitanov, I.V., Prokop’eva, T.M., Sadovskii, Yu.S., Solomoichenko, T.N., Turovskaya, M.K., Piskuno­va, Zh.P., Razumova, N.G., and Popov, A.F., Ukr. Khim. Zh., 2014, vol. 80, p. 30.

    CAS  Google Scholar 

  16. Bhattacharya, S. and Kumar, P.V., J. Org. Chem., 2004, vol. 69, p. 559. https://doi.org/10.1021/jo034745+

    Article  CAS  PubMed  Google Scholar 

  17. Mirgorodskaya, A.B., Valeeva, F.G., Lukashenko, S.S., Kushnazarova, R.A., Prokop’eva, T.M., Zubareva, T.M., Mikhailov, V.A., and Zakharova, L.Ya., J. Mol. Liq., 2018, vol. 250, p. 229. https://doi.org/10.1016/j.molliq.2017.11.175

    Article  CAS  Google Scholar 

  18. Bayissa, L.D., Ohmat, Y., and Hoj, M., Int. J. Chem. Kinet., 2017, vol. 49, p. 71. https://doi.org/10.1002/kin.21052

    Article  CAS  Google Scholar 

  19. Pang, Q.-H., Zang, R.-R., Kang, G.-L., Li, J.-M., Hu, W., Meng, X.-G., and Zeng, X.-Ch., J. Dispersion Sci. Technol., 2005, vol. 27, p. 671. https://doi.org/10.1080/01932690600660541

    Article  CAS  Google Scholar 

  20. Bunton, C.A., Adv. Colloid Interface Sci., 2006, vols. 123–126, p. 333. https://doi.org/10.1016/j.cis.2006.05.008

    Article  CAS  PubMed  Google Scholar 

  21. Simanenko, Yu.S., Popov, A.F., Prokop’eva, T.M., Karpichev, E.A., Belousova, I.A., and Savelova, V.A., Theor. Exp. Chem., 2002, vol. 38, p. 242. https://doi.org/10.1023/A:1020515831658

    Article  CAS  Google Scholar 

  22. Samiey, B., Cheng, C.-H., and Wu, J., J. Chem., 2014, vol. 2014, article ID 908476. https://doi.org/10.1155/2014/908476

  23. Bedford, C.T., Organic Reaction Mechanisms, 2015, Knipe, A.C., Ed., Chichester: Wiley, 2019, p. 73. https://doi.org/10.1002/9781119125082.ch2

  24. Berezin, I.V., Martinek, K., and Yatsimirskii, A.K., Russ. Chem. Rev., 1973, vol. 42, p. 787. https://doi.org/10.1070/RC1973v042n10ABEH002744

    Article  Google Scholar 

  25. Kumar, B., Tikariha, D., Ghosh Kallol, K., Barbero, N., and Quaglitto, P., Phys. Org. Chem., 2013, vol. 26, p. 626. https://doi.org/10.1002/poc.3141

    Article  CAS  Google Scholar 

  26. Wetting, S.D., Novak, P., and Verrall, R.E., Langmuir, 2002, vol. 18, p. 5354. https://doi.org/10.1021/la011782s

    Article  CAS  Google Scholar 

  27. Wettig, S.D. and Verrall, R.E., J. Colloid Interface Sci., 2001, vol. 235, p. 310. https://doi.org/10.1006/jcis.2000.7348

    Article  CAS  PubMed  Google Scholar 

  28. Pal, J., Datta, S., Aswal, V.K., and Bhattacharya, S., J. Phys. Chem. B, 2012, vol. 116, p. 13239. https://doi.org/10.1021/jp304700t

    Article  CAS  PubMed  Google Scholar 

  29. Kapitanov, I.V., Belousova, I.A., Shumeiko, A.E., Kostrikin, M.L., Prokop’eva, T.M., and Popov, A.F., Russ. J. Org. Chem., 2014, vol. 50, p. 694. https://doi.org/10.1134/S1070428014050133

    Article  CAS  Google Scholar 

  30. Prokop’eva, T.M., Kapitanov, I.V., Belousova, I.A., Shumeiko, A.E., Kostrikin, M.L., Turovskaya, M.K., Razumova, N.G., and Popov, A.F., Russ. J. Org. Chem., 2015, vol. 51, p. 1083. https://doi.org/10.1134/S1070428015080047

    Article  CAS  Google Scholar 

  31. Prokop’eva, T.M., Belousova, I.A., Turovskaya, M.K., Razumova, N.G., Panchenko, B.V., and Mikhailov, V.A., Russ. J. Org. Chem., 2018, vol. 54, p. 1630. https://doi.org/10.1134/S1070428018110027

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Razumova.

Ethics declarations

The authors declare the absence of conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2021, Vol. 57, No. 3, pp. 352–362 https://doi.org/10.31857/S0514749221030034.

For communication II, see [1].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belousova, I.A., Zubareva, T.M., Gaidash, T.S. et al. Reactivity of Inorganic α-Nucleophiles in Acyl Transfer Processes in Water and Surfactant Micelles: III. Systems Based on Dimeric Cationic Imidazolium Surfactants in Alkaline Hydrolysis of Ethyl 4-Nitrophenyl Ethylphosphonate. Russ J Org Chem 57, 338–346 (2021). https://doi.org/10.1134/S1070428021030039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428021030039

Keywords:

Navigation