Skip to main content
Log in

Modeling (Prediction) of the Structure of Possible Transition States of Aromatic Hydrocarbons

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Based on the properties of a conjugate p-electron system, a method is proposed for predicting possible spatial structures of aromatic hydrocarbons during their skeletal carbon transformation. The existence of predicted spatial structures is explained by the stabilizing effect of π-electron conjugation. The proposed method for predicting possible spatial structures was verified by DFT B3LYP/6-31G* and RHF/6-31G calculations including electron correlation at the MR4-SDTQ level on the example of benzene and hexafluorobenzene molecules. The proposed method gives stable results regardless of the methods used for calculating the electronic structure of molecules. It is found that of all the predicted spatial structures, one corresponds to the ground state, and the others correspond to transition states. The schemes of thermal isomerization of benzene and hexafluorobenzene, constructed with the potential barriers calculated by the Gonzales–Schlegel method, are consistent with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Scott, L.T. and Jones, M., Chem. Rev., 1972, vol. 72, p. 181. https://doi.org/10.1021/cr60276a004

    Article  CAS  Google Scholar 

  2. Minkin, V.I., Glukhovtsev, M.N., and Simkin, B.Y., Aromaticity and Antiaromaticity: Electronic and Structural Aspects. New York: Wiley, Intersci. Publ. 1994.

  3. Cyrański, M.K., Chem. Rev., 2005, vol. 105, p. 3773. https://doi.org/10.1021/cr0300845

    Article  CAS  PubMed  Google Scholar 

  4. Gorelik, M.V., Russ. Chem. Rev., 1990, vol. 59, p. 197. https://doi.org/10.1070/RC1990v059n02ABEH003514

    Article  CAS  Google Scholar 

  5. Krygowski, T.M., Szatylowicz, H., Stasyuk, O.A., Dominikowska, J., and Palusiak, M., Chem. Rev., 2014, vol. 114, p. 6383. https://doi.org/10.1021/cr400252h

    Article  CAS  PubMed  Google Scholar 

  6. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.J., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., and Montgomery, J.A., J. Comput. Chem., 1993, vol. 14, p. 1347. https://doi.org/10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  7. Gleiter, R., Treptow, B., Irngartinger, H., and Oeser, T., J. Org. Chem., 1994, vol. 59, p. 2787. https://doi.org/10.1021/jo00089a024

    Article  CAS  Google Scholar 

  8. Katz, T.J., Roth, R.J., Acton, N., and Carnahan, E.J., J. Org. Chem., 1999, vol. 64, p. 7663. https://doi.org/10.1021/jo990883g

    Article  CAS  Google Scholar 

  9. Kaplan, L. and Willzbach, K.E., J. Am. Chem. Soc., 1968, vol. 90, p. 3291. https://doi.org/10.1021/ja01014a086

    Article  CAS  Google Scholar 

  10. Wilzbach, K.E., Ritscher, J.S., and Kaplan, L., J. Am. Chem. Soc., 1967, vol. 89, p. 1031. https://doi.org/10.1021/ja00980a053

    Article  CAS  Google Scholar 

  11. Tamelen, E. v E. and Pappas, S., J. Am. Chem. Soc., 1963, vol. 85, p. 3297. https://doi.org/10.1021/ja00903a056

    Article  CAS  Google Scholar 

  12. Katz, T.J. and Acton, N., J. Am. Chem. Soc., 1973, vol. 95, p. 2738. https://doi.org/10.1021/ja00789a084

    Article  CAS  Google Scholar 

  13. Billups, W.E. and Haley, M.M., Angew. Chem. Int. Ed., 1989, vol. 28, p 1711. https://doi.org/10.1002/ange.19891011233

  14. Billups, W., Haley, M., Boese, R., and Bläser, D., Tetrahedron, 1994, vol. 50, p. 10693. https://doi.org/10.1016/S0040-4020(01)89261-9

    Article  CAS  Google Scholar 

  15. Balaban, A.T. and Simon, Z., Rev. Roum. Chim., 1965, vol. 10, p. 1059.

    CAS  Google Scholar 

  16. Balaban, A.T., Polycyclic Arom. Comp., 2004, vol. 24, p. 83. https://doi.org/10.1080/10406630490424124

    Article  CAS  Google Scholar 

  17. Gonzalez, C. and Schlegel, H.B., J. Phys. Chem., 1990, vol. 94, p. 5523. https://doi.org/10.1021/j100377a021

    Article  CAS  Google Scholar 

  18. Oth, J.F.M., Recl. Trav. Chim. Payes-Bas, 1968, vol. 87, p. 1185. https://doi.org/10.1002/recl.19680871012

    Article  CAS  Google Scholar 

  19. Barlow, M.J., Haszeldine, R.N., and Hubbard, R., J. Chem. Soc. (C), 1970, p. 1232. https://doi.org/10.1039/j39700001232

  20. Breslow, R., Gal, P., Chang, H.W., and Altman, L.J., J. Am. Chem. Soc., 1965, vol. 87, p. 5139. https://doi.org/10.1021/ja00950a028

    Article  CAS  Google Scholar 

  21. Dracinsky, M., Castano, O., Kotora, M., and Bour, P., J. Org. Chem., 2010, vol. 75, p. 576. https://doi.org/10.1021/jo902065n

    Article  CAS  PubMed  Google Scholar 

  22. Garavelli, M., Bernardi, F., Cembran, A., Castano, O., Frutos, L.M., Merchan, M., and Olivucci, M., J. Am. Chem. Soc., 2002, vol. 124, p. 13770. https://doi.org/10.1021/ja020741v

    Article  CAS  PubMed  Google Scholar 

  23. Huttner, G., Lange, S., and Fischer, E.O., Angew. Chem., 1971, vol. 10, p. 556. https://doi.org/10.1002/anie.197105561

    Article  CAS  Google Scholar 

  24. Kang, J.W., Moseley, K., and Maitlis, P.M., J. Am. Chem. Soc., 1969, vol. 91, p. 5970. https://doi.org/10.1021/ja01050a008

    Article  CAS  Google Scholar 

  25. Ferrar, L., Mis, M., and Robello, D.R., Tetrahedron Lett., 2008, vol. 49, p. 4130. https://doi.org/10.1016/j.tetlet.2008.04.120

    Article  CAS  Google Scholar 

  26. Gillmore, J.G., Neiser, J.D., McManus, K.A., Roh, Y., Dombrowski, G.W., Brown, T.G., Dinnocenzo, P., Farid, S., and Robello, D.R., Macromolecules, 2005, vol. 38, p. 7684. https://doi.org/10.1021/ma050348k

    Article  CAS  Google Scholar 

  27. Khan, A., Stucky, G.D., and Hawker, C.J., Adv. Mater., 2008, vol. 20, p. 3937. https://doi.org/10.1002/adma.200800776

    Article  CAS  Google Scholar 

  28. Marsella, M.J., Acc. Chem. Res., 2002, vol. 35, p. 944. https://doi.org/10.1021/ar010090s

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Rodionova.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated from Zhurnal Organicheskoi Khimii, 2021, Vol. 57, No. 2, pp. 157–166 https://doi.org/10.31857/S0514749221020014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodionova, E.V., Tomilin, O.B. & Fomina, L.V. Modeling (Prediction) of the Structure of Possible Transition States of Aromatic Hydrocarbons. Russ J Org Chem 57, 135–142 (2021). https://doi.org/10.1134/S1070428021020019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428021020019

Keywords:

Navigation