Skip to main content
Log in

Oxidative Cyclization of Chalcones in the Presence of Sulfamic Acid as Catalyst. Synthesis, Biological Activity, and Thermal Properties of 1,3,5-Trisubstituted Pyrazoles

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

1-Aroyl-3,5-diaryl-1H-pyrazoles were synthesized by oxidative cyclization of chalcones with benzohydrazide and 4-nitrobenzohydrazide using sulfamic acid as a catalyst. The corresponding chalcones were prepared by condensation of aromatic aldehydes with acetophenones in PEG-400 in the presence of potassium hydroxide. Some representative features of the proposed procedure include exceptional regioselectivity, comparatively short reaction time, operational simplicity, and no need of external oxidant. The synthesized pyrazole derivatives were screened as antibacterial agents against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Salmonella typhi by the agar well diffusion method. Attempts were made to compute specific heat capacity of the synthesized pyrazole derivatives as a function of temperature using TGA–DSC in order to avail thermodynamic database for these biologically relevant heterocycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Gupta, G.R., Shah, J., Vadagaonkar, K.S., Lavekar, A.G., and Kapdi, A.R., Org. Biomol. Chem., 2019, vol. 17, p. 7596. https://doi.org/10.1039/C9OB01152H

    Article  CAS  PubMed  Google Scholar 

  2. Sainsbury, M., Heterocyclic Chemistry, Cambridge UK: Roy. Soc. Chem., 2001.

  3. Gupta, G.R., Chaudhari, G.R., Tomar, P.A., Waghulade, G.P., and Patil, K.J., Asian J. Chem., 2012, vol. 24, p. 4675.

    CAS  Google Scholar 

  4. Gupta, G., Chaudhari, G., Tomar, P., Gaikwad, Y., Azad, R., Pandya, G., Waghulde, G., and Patil, K., Eur. J. Chem., 2012, vol. 3, p. 475. https://doi.org/10.5155/eurjchem.3.4.475-479.709

    Article  CAS  Google Scholar 

  5. Oparin, A.I., The Origin of Life, New York, Dover Publications, 1965.

  6. Bhirud, J.D., Mahulikar, P.P., and Narkhede, H.P., Indian J. Chem., Sect. B., 2018, vol. 57, p. 1208. http://nopr.niscair.res.in/handle/123456789/45042

    Google Scholar 

  7. Bhilare, S., Shah, J., Gaikwad, V., Gupta, G., Sanghvi, Y., Bhanage, B., and Kapdi, A.R., Synthesis, 2019, vol. 51, p. 4239. https://doi.org/10.1055/s-0039-1690190

    Article  CAS  Google Scholar 

  8. Mishra, S.K., Majumdar, P., Behera, R.K., and Behera, A.K.,Synth. Commun., 2014, vol. 44, p. 32. https://doi.org/10.1080/00397911.2013.765483

    Article  CAS  Google Scholar 

  9. Brown, E.G., Ring Nitrogen and Key Biomolecules. The Biochemistry of N-Heterocycles, Dordrecht: Springer, 1998. https://doi.org/10.1007/978-94-011-4906-8

  10. Synthesis of Heterocycles in Contemporary Medicinal Chemistry, Casar, Z., Ed., Switzerland: Springer, 2016. https://doi.org/10.1007/978-3-319-39917-1

  11. Joule, J.A. and Mills, K., Heterocyclic Chemistry, Hoboken NJ: Wiley, 2009, 5th ed.

  12. Joule, J.A. and Mills, K., Heterocyclic Chemistry at a Glance, Chichester: Wiley, 2012, 2nd ed.

  13. Rauf, A. and Farshori, N.N., Microwave-Induced Synthesis of Aromatic Heterocycles, Dordrecht: Springer, 2012. https://doi.org/10.1007/978-94-007-1485-4

  14. Rao, V.K., Tiwari, R., Chhikara, B.S., Shirazi, A.N., Parang, K., and Kumar, A., RSC Adv., 2013, vol. 3, p. 15396. https://doi.org/10.1039/C3RA41830H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xian-Hai, L., Zi-Li, R., Ming-Jie, C., Peng, W., Xiang-Feng, M., Dong-Dong, L., and Hai, Q.C., RSC Adv., 2015, vol. 5, p. 55179. https://doi.org/10.1039/C5RA09286H

    Article  CAS  Google Scholar 

  16. Heterocyclic Chemistry in Drug Discovery, Li, J.J., Ed., Hoboken NJ: Wiley, 2013.

  17. Parameswaran, P.S., Naik, C.G., and Hegde, V.R., J. Nat. Prod., 1997, vol. 60, p. 802. https://doi.org/10.1021/np970134z

    Article  CAS  Google Scholar 

  18. Motoba, K., Nishizawa, H., Suzuki, T., Hamaguchi, H., Uchida, M., and Funayama, S., Pestic. Biochem. Physiol., 2000, vol. 67, p. 73. https://doi.org/10.1006/pest.2000.2477

    Article  CAS  Google Scholar 

  19. Orth, R.E., J. Pharm. Sci., 1968, vol. 57, p. 537. https://doi.org/10.1002/jps.2600570401

    Article  CAS  PubMed  Google Scholar 

  20. Ismail, M.A.H., Lehmann, J., Abou El Ella, D.A., Albohy, A., and Abouzid, K.A.M., Med. Chem. Res., 2009, vol. 18, p. 725. https://doi.org/10.1007/s00044-009-9163-2

    Article  CAS  Google Scholar 

  21. Mukherjee, A. and Sarka, A., Tetrahedron Lett., 2004, vol. 45, p. 9525. https://doi.org/10.1016/j.tetlet.2004.11.016

    Article  CAS  Google Scholar 

  22. Dorlars, A., Schellhammer, C.W., and Schroeder, J., Angew. Chem., Int. Ed. Engl., 1975, vol. 14, p. 665. https://doi.org/10.1002/anie.197506651

    Article  Google Scholar 

  23. Catalan, J., Fabero, F., Claramunt, R.M., Santa Maria, M.D., Hernandez Cano, F., Martinez-Ripoll, M., Elguero, J., and Sastre, R., J. Am. Chem. Soc., 1992, vol. 114, p. 5039. https://doi.org/10.1021/ja00039a014

    Article  CAS  Google Scholar 

  24. Yang, Z., Zhang, K., Gong, F., Li, S., Chen, J., Shi Ma, J., Sobenina, L.N., Mikhaleva, A.I., Trofimov, B.A., and Yang, G., J. Photochem. Photobiol., 2011, vol. 217, p. 29. https://doi.org/10.1016/j.jphotochem.2010.09.012

    Article  CAS  Google Scholar 

  25. Zhang, X., Kang, J., Niu, P., Wu, J., Yu, W., and Chang, J.,J. Org. Chem., 2014, vol. 79, p. 10170. https://doi.org/10.1021/jo501844x

    Article  CAS  PubMed  Google Scholar 

  26. Agarwal, R. and Kumar, R., Synth. Commun., 2009, vol. 39, p. 2169. https://doi.org/10.1080/00397910802640038

    Article  CAS  Google Scholar 

  27. Chambers, W.L. and Willard, M.L., J. Am. Chem. Soc., 1960, vol. 82, p. 3373. https://doi.org/10.1021/ja01498a035

    Article  CAS  Google Scholar 

  28. Sreekumar, R. and Padmakumar, R., Synth. Commun., 1998, vol. 28, p. 1661. https://doi.org/10.1080/00397919808006870

    Article  CAS  Google Scholar 

  29. Alex, K., Tillack, A., Schwarz, N., and Beller, M., Org. Lett., 2008, vol. 10, p. 2377. https://doi.org/10.1021/ol800592s

    Article  CAS  PubMed  Google Scholar 

  30. Chen, X., She, J., Shang, Z., Wu, J., and Zhang, P., Synth. Commun., 2009, vol. 39, p. 947. https://doi.org/10.1080/00397910802441551

    Article  CAS  Google Scholar 

  31. Nakamichi, N., Kawashita, Y., and Hayashi, M., Org. Lett., 2002, vol. 4, p. 3955. https://doi.org/10.1021/ol0268135

    Article  CAS  PubMed  Google Scholar 

  32. Kammoun, M., Turki, H., Ammar, H., and El Gharbi, R., Synth. Commun., 2012, vol. 42, p. 1677. https://doi.org/10.1080/00397911.2010.542863

    Article  CAS  Google Scholar 

  33. Sharshira, E.M. and Hamada, N.M.M., Molecules, 2012, vol. 17, p. 4962. https://doi.org/10.3390/molecules17054962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Patel, A.R., Badmanaban, R., Sen, D.J., and Patel, C.N., Am. J. Adv. Drug Delivery, 2013, vol. 1, p. 113.

    Google Scholar 

  35. Deniβen, M., Nordmann, J., Dziambor, J., Mayer, B., Frank, W., and Müller, T.J.J., RSC Adv., 2015, vol. 5, p. 33838. https://doi.org/10.1039/c5ra03104d

    Article  Google Scholar 

  36. Montes, M.G., Soares, R.M., Moura, R.R., and Granjao, V.F.,Fuel, 2012, vol. 97, p. 884. https://doi.org/10.1016/j.fuel.2012.02.038

    Article  CAS  Google Scholar 

  37. Heravi, M.M., Baghernejad, B., and Oskooie, H.A., Curr. Org. Chem., 2009, vol. 13, p. 1002. https://doi.org/10.2174/138527209788680790

    Article  CAS  Google Scholar 

  38. Foroughifar, N., Mobinikhaledi, A., Bodaghi Fard, M.A., Moghanian, H., and Ebrahimi, S., Synth. React. Inorg., Met.-Org., Nano-Met. Chem., 2009, vol. 39, p. 161. https://doi.org/10.1080/15533170902785075

    Article  CAS  Google Scholar 

  39. Sarkate, A.P., Sangshetti, J.N., Dharbale, N.B., Sarkate, A.P., and Shinde, D.B., J. Chil. Chem. Soc., 2015, vol. 60, p. 2832.

    Article  CAS  Google Scholar 

  40. Brahmachari, G., Begam, S., and Nurjamal, K., ChemistrySelect, 2018, vol. 3, p. 3400. https://doi.org/10.1002/slct.201800488

    Article  CAS  Google Scholar 

  41. Gupta, G., Shaikh, V., and Patil, K., Curr. Phys. Chem., 2018, vol. 8, p. 175. https://doi.org/10.2174/1877946808666181031113024

    Article  CAS  Google Scholar 

  42. Gupta, G.R., Patil, P.D., Shaikh, V.R., Kolhapurkar, R.R., Dagade, D.H., and Patil, K.J., Curr. Sci., 2018, vol. 114, p. 2525. https://doi.org/10.18520/CS/V114/I12/2525-2529

    Article  CAS  Google Scholar 

  43. Patil, K.S., Zope, P.H., Patil, U.T., Patil, P., Dubey, R.S., and Gupta, G.R., Bull. Mater. Sci. 2019, vol. 42, p. 24. https://doi.org/10.1007/s12034-018-1705-0

  44. The Nature of Biological Systems as Revealed by Thermal Methods, Lörinczy, D., Dordrecht: Kluwer Academic, 2004.

  45. Applied Plastics Engineering Handbook: Processing, Materials, and Applications. Myer, K., Ed., Oxford UK: Elsevier, 2017, 2nd ed. https://doi.org/10.1016/C2014-0-04118-4

  46. Heat Capacities: Liquids, Solutions and Vapours, Wilhelm, E. and Letcher, T.M., Eds., Cambridge: Roy. Soc. Chem., 2010.

  47. Sreedhar, N.Y., Jayapal, M.R., Sreenivasa Prasad, K., and Reddy Prasad, P., Res. J. Pharm. Biol. Chem. Sci., 2010, vol. 1, p. 480.

    CAS  Google Scholar 

  48. Girase, T.R., Patil, K.J., Kapdi, A.R., and Gupta, G.R., ChemistrySelect, 2020, vol. 5, p. 4251. https://doi.org/10.1002/slct.201904837

    Article  CAS  Google Scholar 

  49. Patil, K.S. and Gupta, G.R., Int. J. Manage. Technol. Eng., 2019, vol. 9, p. 1530. http://ijamtes.org/gallery/187-jan19.pdf

    Google Scholar 

  50. Sarode, C., Yeole, S., Chaudhari, G., Waghulde, G., and Gupta, G.,Curr. Phys. Chem., 2020, vol. 10, in press. https://doi.org/10.2174/1877946810999200519102040

  51. Gupta, G., Shaikh, V., Kalas, S., and Patil, K.J., Curr. Phys. Chem., 2020, vol. 10, in press. https://doi.org/10.2174/1573412916999200430092644

  52. Vankatasatyanarayana, G., Lakshmana Rao, V., Laxminarayana, E., and Tirumala Chary, M., Indian J. Chem., Sect. B, 2016, vol. 55, p. 718.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to the central Instrumentation Laboratory, Moolji Jaitha College (Jalgaon) for recording the FT-IR spectra and evaluating biological activity. The authors are also grateful to Punjab University, Chandigarh, for providing the spectral data of the synthesized compounds and to Nagpur University for TGA/DSC analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. R. Gupta or H. P. Narkhede.

Ethics declarations

The authors declare no conflict of interest.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhirud, J.D., Gupta, G.R. & Narkhede, H.P. Oxidative Cyclization of Chalcones in the Presence of Sulfamic Acid as Catalyst. Synthesis, Biological Activity, and Thermal Properties of 1,3,5-Trisubstituted Pyrazoles. Russ J Org Chem 56, 1815–1822 (2020). https://doi.org/10.1134/S1070428020100243

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428020100243

Keywords:

Navigation