Skip to main content
Log in

Lonazolac analogues: molecular modeling, synthesis, and in vivo anti-inflammatory activity

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A novel series of 1,3-diarylpyrazole derivatives (48), analogues to lonazolac, were designed, synthesized, and evaluated for their anti-inflammatory as well as analgesic activities. To target preferential cyclooxygenase-2 (COX-2) inhibitors, the design of these compounds was based upon two different molecular modeling studies. The first study included fit-comparison study of conformational models of compounds 48 with a novel validated COX-2 inhibitors hypothesis generated from the corresponding leads IV using Hip-Hop CATALYST software. The second study included docking study of the designed compounds 48 with binding site of COX-1 and COX-2 enzymes using internal coordinate mechanics (ICM)-Pro software. The reported Akaho method was then used to predict the COX-2 preferentiality of the designed compounds. The designed molecules were synthesized and screened for in vivo anti-inflammatory and analgesic activity. Compounds 4a, 6a, and 8b showed high activity in comparison with indomethacin, consistent with virtual molecular modeling studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1
Scheme 2

Similar content being viewed by others

References

  • Abouzid K, Frohberg P, Lehmann J, Decker M (2007) 6-Aryl-4-oxohexanoic acids: synthesis, effects on eicosanoid biosynthesis, and anti-inflammatory in vivo activities. Med Chem 3:433–436. doi:10.2174/157340607781745393

    Article  CAS  PubMed  Google Scholar 

  • Akaho E, Fujikawa C, Runion H, Hill C, Nakano H (1999) A study on binding modes of NSAIDs to COX-1 and COX-2 as obtained by Dock 4.0. J Chem Softw 15:1–14. doi:10.2477/jchemsoft.5.1

    Google Scholar 

  • Bertez G (1987) Inhibiteurs mixtes des voies de la cyclooxygénase et des lipoxygénase, synthése et activté de derives hydrazoniques. Eur J Med Chem 22:147–152. doi:10.1016/0223-5234(87)90010-9

    Article  Google Scholar 

  • Bratenko MK, Chornous VA, Vovk MV (2001) 4-Functionally substituted 3-heterylpyrazoles: III 3-Aryl(heteryl)pyrazole-4-carboxylic acids and their derivatives. Russ J Org Chem 37:552–555. doi:10.1023/A:1012490120976

    Article  CAS  Google Scholar 

  • Cavasotto CN, Ortiz MA, Abagyanc RA, Piedrafitab FJ (2006) In silico identification of novel EGFR inhibitors with antiproliferative activity against cancer cells. Bioorg Med Chem Lett 16:1969–1974. doi:10.1016/j.bmcl.2005.12.067

    Article  CAS  PubMed  Google Scholar 

  • Dannhardt G, Kiefer W (2001) Cyclooxygenase inhibitors—current status and future prospects. Eur J Med Chem 36:109–126. doi:10.1016/S0223-5234(01)01197-7

    Article  CAS  PubMed  Google Scholar 

  • De Luca L, Giacomelli G, Masala S, Porcheddu A (2004) A mild procedure for the preparation of 3-aryl-4-formylpyrazoles. Synlett 13:2299–2302

    Google Scholar 

  • Habeeb A, Rao P, Knaus E (2001a) Design and synthesis of celecoxib and rofecoxib analogues as selective cyclooxygenase-2 (COX-2) inhibitors: replacement of sulfonamide and methylsulfonyl pharmacophores by an azido bioisostere. J Med Chem 44:3039–3042. doi:10.1021/jm010153c

    Article  CAS  PubMed  Google Scholar 

  • Habeeb AG, Rao PNP, Knaus EE (2001b) Design and synthesis of 4,5-diphenyl-4-isoxazolines: novel inhibitors of cyclooxygenase-2 with analgesic and antiinflammatory activity. J Med Chem 44:2921–2927. doi:10.1021/jm0101287

    Article  CAS  PubMed  Google Scholar 

  • Hania MM (2005) Synthesis and antibacterial activity of oximes, semicarbazones and phenylhydrazones. Asian J Chem (Kyoto) 17:439–442

    CAS  Google Scholar 

  • Ismail MAH, Aboul-Enein MNY, Abouzid KAM, Seryaa RAT (2006) Ligand design and synthesis of new imidazo[5, 1-B]quinazoline derivatives As A1-adrenoceptor agonists and antagonists. Bioorg Med Chem 14:898–910. doi:10.1016/j.bmc.2005.07.037

    Article  CAS  PubMed  Google Scholar 

  • Kalgutkar A, Marnett A, Crews B, Remmel R, Marnett L (2000) Ester and amide derivatives of the nonsteroidal antiinflammatory drug, indomethacin, as selective cyclooxygenase-2 inhibitors. J Med Chem 43:2860–2870. doi:10.1021/jm000004e

    Article  CAS  PubMed  Google Scholar 

  • Kalgutkar A, Rowlinson S, Crews B, Marnett L (2002) Amide derivatives of meclofenamic acid as selective cyclooxygenase-2 inhibitors. Bioorg Med Chem Lett 12:521–524. doi:10.1016/S0960-894X(01)00792-2

    Article  CAS  PubMed  Google Scholar 

  • Kira MA, Abdel-Rahman MO, Gadalla KZ (1969) The Vilsmeier–Haack reaction—III Cyclization of hydrazones to pyrazoles. Tetrahedron Lett 2:109–110. doi:10.1016/S0040-4039(01)88217-4

    Article  Google Scholar 

  • Kurumbail RG, Stevens AM, Gierse JK, Mcdonald JJ, Stegeman RA, Pak JY (1996) Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 384:644–648. doi:10.1038/384644a0

    Article  CAS  PubMed  Google Scholar 

  • Li CS, Brideau C, Chan C, Savoie C, Claveau D, Charleson S, Gordon R, Grereig G (2003) Pyridazinone as selective cyclooxygenase-2 inhibitors. Bioorg Med Chem Lett 13:597–600. doi:10.1016/S0960-894X(02)01045-4

    Article  CAS  PubMed  Google Scholar 

  • Olgen S, Akaho E, Nebioglu D (2001) Synthesis and receptor docking studies of N-substituted indole-2-carboxylic acid esters as a search for COX-2 selective enzyme inhibitors. Eur J Med Chem 36:747–770. doi:10.1016/S0223-5234(01)01258-2

    Article  CAS  PubMed  Google Scholar 

  • Palomer A, Cabre F, Pascual J, Campos J, Trujillo M, Entrena A, Gallo M, Mauleon D, Espinosa A (2002) Identification of novel cyclooxygenase-2 selective inhibitors using pharmacophore models. J Med Chem 45:1402–1411. doi:10.1021/jm010458r

    Article  CAS  PubMed  Google Scholar 

  • Penning TD, Talley JJ, Bertenshaw SR, Carter JS, Collins PW, Docter S, Graneto MJ, Lee LF, Malecha JW, Miyashiro JM, Rogers RS, Rogier DJ, Yu SS, Anderson GD, Burton EG, Cogburn JN, Gregory SA, Koboldt CM, Perkins WE, Seibert K, Veenhuizen AW, Zhang YY, Isakson PC (1997) Synthesis and biological evaluation of the 1, 5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1 h-pyrazol-1-yl]benzenesulfonamide (SC-58635, Celecoxib). J Med Chem 40:1347–1365. doi:10.1021/jm960803q

    Article  CAS  PubMed  Google Scholar 

  • Ranatunge RR, Garavey DS, Janero DR, Letts LG, Martino AM, Murty MG, Richardson SK, Young DV, Zemetseva IS (2004) Synthesis and selective cyclooxygenase-2 (COX-2) inhibitory activity of a series of novel bicyclic pyrazoles. Bioorg Med Chem 12:1357–1366. doi:10.1016/j.bmc.2004.01.012

    Article  CAS  PubMed  Google Scholar 

  • Riedel R (1981) Pharmacological properties of lonazolac-calcium, a new antiinflammatory antirheumatic drug. Arzneim-Forsch Drug Res 31:655–665

    CAS  Google Scholar 

  • Scholz M, Ulbrich HK, Dannhardt G (2008) Investigations concerning the COX/5-LOX inhibiting and hydroxyl radical scavenging potencies of novel 4, 5-diaryl isoselenazoles. Eur J Med Chem 43:1152–1159. doi:10.1016/j.ejmech.2007.09.007

    Article  CAS  PubMed  Google Scholar 

  • Soliva R, Almansa C, Kalko SG, Luque FJ, Orozco M (2003) Theoretical studies on the inhibition mechanism of cyclooxygenase-2. Is there a unique recognition site? J Med Chem 46:1372–1382. doi:10.1021/jm0209376

    Article  CAS  PubMed  Google Scholar 

  • Vogel HG (2002) Drug discovery and evaluation: pharmacological assays. Springer, Berlin

    Book  Google Scholar 

  • Zaheer SH, Hacker IK, Rao NS (1956) The condensation of levulinic acid with aromatic aldehydes. Chem Ber 89:351–354. doi:10.1002/cber.19560890226

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was partially supported by a grant from the Egyptian Ministry of Higher Education and State for Scientific Research (MHESR), ParOwn (0906).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled A. M. Abouzid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ismail, M.A.H., Lehmann, J., Abou El Ella, D.A. et al. Lonazolac analogues: molecular modeling, synthesis, and in vivo anti-inflammatory activity. Med Chem Res 18, 725–744 (2009). https://doi.org/10.1007/s00044-009-9163-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-009-9163-2

Keywords

Navigation