Skip to main content
Log in

Reactivity of Inorganic α-Nucleophiles in Acyl Group Transfer Processes in Water and Surfactant Micelles: II.1 Alkaline Hydrolysis of Ethyl 4-Nitrophenyl Ethylphosphonate in Systems Based on Dimeric Cationic Surfactants

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Alkaline hydrolysis of ethyl 4-nitrophenyl ethylphosphonate in organized nanosized systems based on dimeric surfactants and co-micelles [with cetyl(trimethyl)ammonium bromide as co-surfactant]. Transfer of the reaction from water to the micellar pseudophase accelerates the alkaline hydrolysis by a factor of 10 to 170. The maximum acceleration has been observed for tetraalkylammonium surfactant 16–3–16. The main factors responsible for micellar effects of surfactants are both substrate concentration and change of the reactivity of hydroxide ion in going from bulk water to surfactant micelles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turovskaya, M.K., Mikhailov, VA., Burakov, N.I., Kapitanov, I.V, Zubareva, T.M., Lobachev, V.L., Panchenko, B.V., and Prokop’eva, T.M., Russ. J. Org. Chem., 2017, vol. 53, p. 351. https://doi.org/10.1134/S107042801703006X

    Article  CAS  Google Scholar 

  2. Haswell, S.J. and Watts, P., Green Chem., 2003, vol. 5, p. 240. https://doi.org/10.1039/b210539j

    Article  CAS  Google Scholar 

  3. Pavez, P., Oliva, G., and Millán, D., Chem Eng., 2016, vol. 4, p. 7023. https://doi.org/10.1021/acssuschemeng.6b01923

    CAS  Google Scholar 

  4. Samiey, B., Cheng, C.-H., and Wu, J., J. Chem., 2014, article ID 908476. https://doi.org/10.1155/2014/908476

  5. Bedford, C.T., Organic Reaction Mechanisms, Knipe, A.C., Ed., Wiley, 2018, p. 87.

  6. Patel, U., Parekh, P., Sastry, N.V., Aswal, V.K., and Bahadur, P., J. Mol. Liq., 2017, vol. 225, p. 888. https://doi.org/10.1016/j.molliq.2016.11.017

    Article  CAS  Google Scholar 

  7. Kamboj, R., Singh, S., Bhadani, A., Kataria, H., and Kaur, G., Langmuir, 2012, vol. 28, p. 11969. https://doi.org/10.1021/la300920p

    Article  CAS  Google Scholar 

  8. Alam, Md.S., Siddig, A.M., and Mandal, A.B., Russ. J. Phys. Chem. A, 2018, vol. 92, p. 185. https://doi.org/10.1134/s0036024418010028

    Article  CAS  Google Scholar 

  9. Scholz, N., Behnke, T., and Resch-Genger, U., J. Fluoresc., 2018, vol. 28, p. 465. https://doi.org/10.1007/s10895-018-2209-4

    Article  CAS  Google Scholar 

  10. Zhang, Q., Gao, Z., Xu, F., and Tai, S., J. Colloid Interface Sci., 2012, vol. 371, p. 73. https://doi.org/10.1016/j.jcis.2011.12.076

    Article  CAS  Google Scholar 

  11. Sadovskii, Yu., Solomoichenko, T.N., Turovskaya, M.K., Kapitanov, I.V., Piskunova, Zh.P., Kostrikin, M.K., Prokop’eva, T.M., and Popov, A.F., Theor. Exp. Chem., 2012, vol. 48, p. 122. https://doi.org/10.1007/s11237-012-9249-7

    Article  CAS  Google Scholar 

  12. Kapitanov, I.V., Prokop’eva, T.M., Sadovskii, Yu.S., Solomoichenko, T.N., Turovskaya, M.K., Piskunova, Zh.P., Razumova, N.G., and Popov, A.F., Ukr. Khim. Zh., 2014, vol. 80, p. 30.

    CAS  Google Scholar 

  13. Bhattacharya, S. and Kumar, P.V., J. Org. Chem., 2004, vol. 69, p. 559. https://doi.org/10.1021/jo034745+

    Article  CAS  Google Scholar 

  14. Mirgorodskaya, A.B., Valeeva, F.G., Lukashenko, S.S., Kushnazarova, R.A., Prokop’eva, T.M., Zubareva, T.M., Mikhailov, V.A., and Zakharova, L.Ya., J. Mol. Liq., 2018, vol. 250, p. 229. https://doi.org/10.1016/j.molliq.2017.11.175

    Article  CAS  Google Scholar 

  15. Bunton, C.A., Adv. Colloid Interface Sci., 2006, vols. 123’126, p. 333. https://doi.org/10.1016/j.cis.2006.05.008

    Article  Google Scholar 

  16. Berezin, I.V, Martinek, K., and Yatsimirskii, A.K., Russ. Chem. Rev., 1973, vol. 42, p. 787. https://doi.org/10.1070/RC1973v042n10ABEH002744

    Article  Google Scholar 

  17. Wettig, S.D., Novak, P., and Verrall, R.E., Langmuir, 2002, vol. 18, p. 5354. https://doi.org/10.1021/la011782s

    Article  CAS  Google Scholar 

  18. Wettig, S.D. and Verrall, R.E., J. Colloid Interface Sci., 2001, vol. 235, p. 310. https://doi.org/10.1006/jcis.2000.7348

    Article  CAS  Google Scholar 

  19. Sood, A.K. and Sharma, S., Phys. Chem. Liq., 2016, vol. 54, p. 574. https://doi.org/10.1080/00319104.2016.1139711

    Article  CAS  Google Scholar 

  20. Banipal, T.S., Sood, A.K., and Singh, K., J. Surfactants Deterg., 2011, vol. 14, p. 235. https://doi.org/10.1007/s11743-010-1217-4

    Article  CAS  Google Scholar 

  21. Sood, A.K., Singh, K., Kaur, J., and Banipal, T.S., J. Surfactants Deterg., 2012, vol. 15, p. 327. https://doi.org/10.1007/s11743-011-1314-z

    Article  CAS  Google Scholar 

  22. Kapitanov, I.V., Belousova, I.A., Shumeiko, A.E., Kostrikin, M.L., Prokop’eva, T.M., and Popov, A.F., Russ. J. Org. Chem., 2014, vol. 50, p. 694. https://doi.org/10.1134/S1070428014050133

    Article  CAS  Google Scholar 

  23. Prokop’eva, T.M., Kapitanov, I.V., Belousova, I.A., Shumeiko, A.E., Kostrikin, M.L., Turovskaya, M.K., Razumova, N.G., and Popov, A.F., Russ. J. Org. Chem., 2015, vol. 51, p. 1083. https://doi.org/10.1134/S1070428015080047

    Article  Google Scholar 

  24. Prokop’eva, T.M., Belousova, I.A., Turovskaya, M.K., Razumova, N.G., Panchenko, B.V., and Mikhailov, V.A., Russ. J. Org. Chem., 2018, vol. 54, p. 1630. https://doi.org/10.1134/S1070428018110027

    Article  Google Scholar 

  25. Simanenko, Yu.S., Popov, A.F., Prokop’eva, T.M., Karpichev, E.A., Savelova, V.A., Suprun, I.P., and Bunton, C.A., Russ. J. Org. Chem., 2002, vol. 38, p. 1286. https://doi.org/10.1023/A:1021699628721

    Article  CAS  Google Scholar 

  26. Zubareva, T.M., Anikeev, A.V., Karpichev, E.A., Kapitanov, I.V., Prokop’eva, T.M., and Popov, A.F., Theor. Exp. Chem., 2011, vol. 47, p. 108. https://doi.org/10.1007/s11237-011-9190-1

    Article  CAS  Google Scholar 

  27. Zubareva, T.M., Anikeev, A.V., Karpichev, E.A., Red’ko, A.N., Prokop’eva, T.M., and Popov, A.F., Theor. Exp. Chem., 2011, vol. 47, p. 377. https://doi.org/10.1007/s11237-012-9230-5

    Article  Google Scholar 

  28. Pal, J., Datta, S., Aswal, V.K., and Bhattacharya, S., J. Phys. Chem. B, 2012, vol. 116, p. 13239. https://doi.org/10.1021/jp304700t

    Article  CAS  Google Scholar 

  29. Zana, R., Benrraou, M., and Rueff, R., Langmuir, 1991, vol. 7, p. 1072. https://doi.org/10.1021/la00054a008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Razumova.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Russian Text © The Author(s), 2020, published in Zhurnal Organicheskoi Khimii, 2020, Vol. 56, No. 1, pp. 70–77.

For communication I, see [1].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubareva, T.M., Belousova, I.A., Prokop’eva, T.M. et al. Reactivity of Inorganic α-Nucleophiles in Acyl Group Transfer Processes in Water and Surfactant Micelles: II.1 Alkaline Hydrolysis of Ethyl 4-Nitrophenyl Ethylphosphonate in Systems Based on Dimeric Cationic Surfactants. Russ J Org Chem 56, 53–58 (2020). https://doi.org/10.1134/S1070428020010091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428020010091

Keywords

Navigation