Skip to main content
Log in

Functionalized 2-Substituted Allyl Bromides in the Barbier Allylation of (R)-2,3-O-Isopropylideneglyceraldehyde. Synthesis of the C8–C17, C8–C18, and C5–C17 Building Blocks of Laulimalides and Their Synthetic Analogs

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Several new 2-substituted allyl bromides were synthesized through cyclopropanol intermediates and were then involved in the Barbier allylation of (R)-2,3-O-isopropylideneglyceraldehyde in the presence of zinc in a mixture of tetrahydrofuran and saturated aqueous ammonium chloride to obtain the corresponding homoallylic alcohols with high diastereoselectivity. The possibility of using the latter as building blocks for macrocyclic antitumor agents (laulimalides) and their synthetic analogs was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamamoto, Y. and Asao, N., Chem. Rev., 1993, vol. 93, p. 2207. doi https://doi.org/10.1021/cr00022a010

    Article  CAS  Google Scholar 

  2. Li, C.-J., Tetrahedron, 1996, vol. 52, p. 5643. doi https://doi.org/10.1016/0040-4020(95)01056-4

    Article  CAS  Google Scholar 

  3. Yus, M., Gonzalez-Gomez, J.C., and Foubelo, F., Chem. Rev., 2011, vol. 111, p. 7774. doi https://doi.org/10.1021/cr1004474

    Article  CAS  Google Scholar 

  4. Venkatesham, A. and Nagaiah, K., Tetrahedron: Asymmetry, 2012, vol. 23, p. 1186. doi https://doi.org/10.1016/j.tetasy.2012.07.015

    Article  CAS  Google Scholar 

  5. Kageyama, M., Miyagi, T., Yoshida, M., Nagasawa, T., Ohrui, H., and Kuwahara, S., Biosci. Biotechnol. Biochem., 2012, vol. 76, p. 1219. doi https://doi.org/10.1271/bbb.120134

    Article  CAS  PubMed  Google Scholar 

  6. Yadav, J., Reddy, N.M., Rahman, M.A., and Prasad Reddy, B.VS., Tetrahedron, 2013, vol. 69, p. 8618. doi https://doi.org/10.1016/j.tet.2013.07.072

    Article  CAS  Google Scholar 

  7. Sanyal, I., Shukla, B., Barman, P.D., and Banerjee, A.K., Tetrahedron Lett., 2013, vol. 54, p. 2637. doi https://doi.org/10.1016/j.tetlet.2013.03.035

    Article  CAS  Google Scholar 

  8. Zimmermann, N., Pinard, P., Carboni, B., Gosselin, P., Gaulon-Nourry, C., Dujardin, G., Collet, S., Lebreton, J., and Mathe-Allainmat, M., Eur. J. Org. Chem., 2013, p. 2303. doi https://doi.org/10.1002/ejoc.201201728

  9. Holt, D. and Gaunt, M.J., Angew. Chem., Int. Ed., 2015, vol. 54, p. 7857. doi https://doi.org/10.1002/anie.201501995

    Article  CAS  Google Scholar 

  10. Heathcock, C.H., Young, S.D., Hagen, J.P., Pirrung, M.C., White, C.T., and VanDerveer, D., J. Org. Chem., 1980, vol. 45, p. 3846. doi https://doi.org/10.1021/jo01307a023

    Article  CAS  Google Scholar 

  11. Hafner, A., Duthaler, R.O., Marti, R., Rihs, G., Rothe-Streit, P., and Schwarzenbach, F., J. Am. Chem. Soc., 1992, vol. 114, p. 2321. doi https://doi.org/10.1021/ja00033a005

    Article  CAS  Google Scholar 

  12. Solomon, M.S. and Hopkins, P.B., J. Org. Chem., 1993, vol. 58, p. 2232. doi https://doi.org/10.1021/jo00060a045

    Article  CAS  Google Scholar 

  13. Pan, C.-F., Zhang, Z.-H., Sun, G.-J., and Wang, Z.-Y., Org. Lett., 2004, vol. 6, p. 3059. doi https://doi.org/10.1021/ol049008u

    Article  CAS  PubMed  Google Scholar 

  14. Solomon, M.S. and Hopkins, P.B., Tetrahedron Lett., 1991, vol. 32, p. 3297. doi https://doi.org/10.1016/S0040-4039(00)92690-X

    Article  CAS  Google Scholar 

  15. Liu, B. and Zhou, W.-S., Org. Lett., 2004, vol. 6, p. 71. doi https://doi.org/10.1021/ol036058a

    Article  CAS  PubMed  Google Scholar 

  16. Cheung, C.-M., Craig, D., and Todd, R.S., Synlett, 2001, p. 1611. doi https://doi.org/10.1055/s-2001-17442

  17. Cossy, J., Willis, C., Bellosta, V., and Bouz, S., J. Org. Chem., 2002, vol. 67, p. 1982. doi https://doi.org/10.1021/jo010653d

    Article  CAS  PubMed  Google Scholar 

  18. Kiren, S. and Williams, L.J., Org. Lett., 2005, vol. 7, p. 2905. doi https://doi.org/10.1021/ol0508375

    Article  CAS  PubMed  Google Scholar 

  19. Nakashima, K., Kikuchi, N., Shirayama, D., Miki, T., Ando, K., Sono, M., Suzuki, S., Kawase, M., Kondoh, M., Sato, M., and Tori, M., Bull. Chem. Soc. Jpn., 2007, vol. 80, p. 387. doi https://doi.org/10.1246/bcsj.80.387

    Article  CAS  Google Scholar 

  20. Xie, J., Ma, Y., and Horne, D.A., J. Org. Chem., 2011, vol. 76, p. 6169. doi https://doi.org/10.1021/jo200899v

    Article  CAS  PubMed  Google Scholar 

  21. Arthuis, M., Beaud, R., Gandon, V., and Roulland, E., Angew. Chem., Int. Ed., 2012, vol. 51, p. 1 510. doi https://doi.org/10.1002/anie.201205479

    Article  CAS  Google Scholar 

  22. Li, M., Xiong, J., Huang, Y., Wang, L.-J., Tang, Y., Yang, G.-X., Liu, X.-H., Wei, B.-G., Fan, H., Zhao, Y., Zhai, W.-Z., and Hu, J.-F., Tetrahedron, 2015, vol. 71, p. 5285. doi https://doi.org/10.1016/j.tet.2015.06.020

    Article  CAS  Google Scholar 

  23. Binder, W.H., Prenner, R.H., and Schmid, W., Tetrahedron, 1994, vol. 50, p. 749. doi https://doi.org/10.1016/S0040-4020(01)80790-0

    Article  CAS  Google Scholar 

  24. Paquette, L.A. and Mitzel, T.M., Tetrahedron Lett., 1995, vol. 36, p. 6863. doi https://doi.org/10.1016/0040-4039(95)01439-O

    Article  CAS  Google Scholar 

  25. Paquette, L.A. and Mitzel, T.M., J. Am. Chem. Soc., 1996, vol. 118, p. 1931. doi https://doi.org/10.1021/ja953682c

    Article  CAS  Google Scholar 

  26. Chng, S.-S., Xu, J., and Loh, T.-P., Tetrahedron Lett., 2003, vol. 44, p. 4997. doi https://doi.org/10.1016/S0040-4039(03)01173-0

    Article  CAS  Google Scholar 

  27. Moral, J.A., Moon, S.-J., Rodriguez-Torres, S., and Minehan, T.G., Org. Lett., 2009, vol. 11, p. 3734. doi https://doi.org/10.1021/ol901353f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schmoelzer, C., Fischer, M., and Schmid, W., Eur. J. Org. Chem., 2010, p. 4886. doi https://doi.org/10.1002/ejoc.201000623

  29. Mulzer, J. and Angermann, A., Tetrahedron Lett., 1983, vol. 24, p. 2843. doi https://doi.org/10.1016/S0040-4039(00)88039-9

    Article  CAS  Google Scholar 

  30. Boucley, C., Cahiez, G., Carini, S., Cere, V., Comes-Franchini, M., Knochel, P., Pollicino, S., and Ricci, A., J. Organomet. Chem., 2001, vol. 624, p. 223. doi https://doi.org/10.1016/S0022-328X(00)00902-5

    Article  CAS  Google Scholar 

  31. Bied, C., Collin, J., and Kagan, H.B., Tetrahedron, 1992, vol. 48, p. 3877. doi https://doi.org/10.1016/S0040-4020(01)88468-4

    Article  CAS  Google Scholar 

  32. Alcaide, B., Almendros, P., Carrascosa, R., and Torres, M.R., Adv. Synth. Catal., 2010, vol. 352, p. 1277. doi https://doi.org/10.1002/adsc.201000124

    Article  CAS  Google Scholar 

  33. Alcaide, B., Almendros, P., and Carrascosa, R., Tetrahedron, 2012, vol. 68, p. 9391. doi https://doi.org/10.1016/j.tet.2012.09.030

    Article  CAS  Google Scholar 

  34. Sanyal, I., Barman, P.D., and Banerjee, A.K., Tetrahedron Lett., 2015, vol. 56, p. 789. doi https://doi.org/10.1016/j.tetlet.2014.12.065

    Article  CAS  Google Scholar 

  35. Chen, Q., Qiu, X.-L., and Qing, F.-L., J. Org. Chem., 2006, vol. 71, p. 3762. doi https://doi.org/10.1021/jo0601157

    Article  CAS  PubMed  Google Scholar 

  36. Yue, X., Wu, Y.-Y., and Qing, F.-L., Tetrahedron, 2007, vol. 63, p. 1560. doi https://doi.org/10.1016/j.tet.2006.12.014

    Article  CAS  Google Scholar 

  37. Xu, X.-H., You, Z.-W., Zhang, X., and Qing, F.-L., J. Fluorine Chem., 2007, vol. 128, p. 535. doi https://doi.org/10.1016/j.jfluchem.2007.01.007

    Article  CAS  Google Scholar 

  38. Chen, Z.-H., Wang, R.-W., and Qing, F.-L., Tetrahedron Lett., 2012, vol. 53, p. 2171. doi https://doi.org/10.1016/j.tetlet.2012.02.062

    Article  CAS  Google Scholar 

  39. Csuk, R. and Schroeder, C., J. Carbohydr. Chem., 1999, vol. 18, p. 285. doi https://doi.org/10.1080/07328309908543996

    Article  CAS  Google Scholar 

  40. Bhalay, G., Clough, S., McLaren, L., Sutherland, A., and Willis, C.L., J. Chem. Soc., Perkin Trans. 1, 2000, p. 901. doi https://doi.org/10.1039/B200358A

  41. Kameda, Y. and Nagano, H., Tetrahedron, 2006, vol. 62, p. 9751. doi https://doi.org/10.1016/j.tet.2006.07.054

    Article  CAS  Google Scholar 

  42. Moral, J.A., Moon, S.-J., Rodriguez-Torres, S., and Minehan, T.G., Org. Lett., 2009, vol. 11, p. 3734. doi https://doi.org/10.1021/ol901353f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dhanjee, H. and Minehan, T.G., Tetrahedron Lett., 2010, vol. 51, p. 5609. doi https://doi.org/10.1016/j.tetlet.2010.08.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kozyrkov, Yu.Yu. and Kulinkovich, O.G., Synlett, 2002, p. 443. doi https://doi.org/10.1055/s-2002-20461

  45. Haym, I. and Brimble, M.A., Org. Biomol. Chem., 2012, vol. 10, p. 7649. doi https://doi.org/10.1039/C2OB26082D

    Article  CAS  PubMed  Google Scholar 

  46. Mineeva, I.V., Russ. J. Org. Chem., 2017, vol. 53, p. 433. doi https://doi.org/10.1134/S1070428017030204

    Article  CAS  Google Scholar 

  47. Mineeva, I.V. and Kulinkovich, O.G., Russ. J. Org. Chem., 2008, vol. 44, p. 1261. doi https://doi.org/10.1134/S1070428008090029

    Article  CAS  Google Scholar 

  48. Mineyeva, I.V. and Kulinkovich, O.G., Tetrahedron Lett., 2010, vol. 51, p. 1836. doi https://doi.org/10.1016/j.tetlet.2010.01.120

    Article  CAS  Google Scholar 

  49. Mineeva, I.V., Russ. J. Org. Chem., 2014, vol. 50, p. 398. doi https://doi.org/10.1134/S1070428014030178

    Article  CAS  Google Scholar 

  50. Mineeva, I.V., Russ. J. Org. Chem., 2016, vol. 52, p. 355. doi https://doi.org/10.1134/S1070428016030118

    Article  CAS  Google Scholar 

  51. Mülzer, J. and Öhler, E., Chem. Rev., 2003, vol. 103, p. 3753. doi https://doi.org/10.1021/cr940368c

    Article  CAS  PubMed  Google Scholar 

  52. Trost, B.M., Amans, D., Seganish, W.M., and Chung, C.K., Chem. Eur. J., 2012, vol. 18, p. 2961. doi https://doi.org/10.1002/chem.201102899

    Article  CAS  PubMed  Google Scholar 

  53. Mineeva, I.V., Russ. J. Org. Chem., 2015, vol. 51, p. 920. doi https://doi.org/10.1134/S1070428015070052

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Mineyeva.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Organicheskoi Khimii, 2019, Vol. 55, No. 4, pp. 635–644.

Conflict of Interests

The author declares the absence of conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mineyeva, I.V. Functionalized 2-Substituted Allyl Bromides in the Barbier Allylation of (R)-2,3-O-Isopropylideneglyceraldehyde. Synthesis of the C8–C17, C8–C18, and C5–C17 Building Blocks of Laulimalides and Their Synthetic Analogs. Russ J Org Chem 55, 530–539 (2019). https://doi.org/10.1134/S1070428019040195

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428019040195

Keywords

Navigation