Skip to main content
Log in

Mass Spectra of New Heterocycles: XVIII. Electron Impact and Chemical Ionization Mass Spectra of Alkyl 5-Amino-3-methyl-4-(1H-pyrrol-1-yl)thiophene-2-carboxylates

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Electron impact (70 eV) and chemical ionization (methane as reactant gas) mass spectra of alkyl 5-amino-3-methyl-4-(1H-pyrrol-1-yl)thiophene-2-carboxylates have been studied for the first time. All compounds, except for tert-butyl thiophene-2-carboxylate, under electron impact give rise to stable molecular ions which decompose along two paths, depending on the site of positive charge localization (at the ester fragment or amino nitrogen atom). The main fragmentation pathway of the molecular ions is elimination of alkoxy radical from the ester group. Chemical ionization of alkyl 5-amino-3-methyl-4-(1H-pyrrol-1-yl)-thiophene-2-carboxylates involves protonation and electrophilic addition with the base peak corresponding to the [M + H]+ ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klyba, L.V, Nedolya, N.A., Sanzheeva, E.R., and Tarasova, O.A., Russ. J.Org. Chem., 2018, vol. 54, p. 1184. doi https://doi.org/10.1134/S1070428018080110

    Article  CAS  Google Scholar 

  2. d’Ischia, M., Napolitano, A., and Pezzella, A., Comprehensive Heterocyclic Chemistry III, Katritzky, A.R., Ramsden, C.A., Scriven, E.F.V., and Taylor, R.J.K., Eds., Amsterdam: Elsevier, 2008, vol. 3, p. 353. doi https://doi.org/10.1016/B978-008044992-0.00304-7

  3. Leeper, F.J. and Kelly, J.M., Org. Prep. Proced. Int., 2013, vol. 45, p. 171. doi https://doi.org/10.1080/00304948.2013.786590

    Article  CAS  Google Scholar 

  4. Joshi, S.D., More, U.A., Kulkarni, VH., and Aminabhavi, T.M., Curr. Org. Chem., 2013, vol. 17, p. 2279. doi https://doi.org/10.2174/13852728113179990040

    Article  CAS  Google Scholar 

  5. Trofimov, B.A., Mikhaleva, A.I., Schmidt, E.Yu., and Sobenina, L.N., Chemistry of Pyrroles, Boca Raton, FL: CRC, 2014. doi https://doi.org/10.1201/b17510

    Book  Google Scholar 

  6. Bhardwaj, V., Gumber, D., Abbot, V, Dhiman, S., and Sharma, P., RSC Adv., 2015, vol. 5, p. 15233. doi https://doi.org/10.1039/C4RA15710A

    Article  CAS  Google Scholar 

  7. Schatz, J., Brendgen, T., and Schühle, D., Comprehensive Heterocyclic Chemistry III, Katritzky, A.R., Ramsden, C.A., Scriven, E.F.V., and Taylor, R.J.K., Eds., Amsterdam: Elsevier, 2008, vol. 3, p. 931. doi https://doi.org/10.1016/B978-008044992-0.00312-6

  8. Sperry, J.B. and Wright, D.L., Curr. Opin. Drug Discovery Dev., 2005, vol. 8, p. 723. doi https://doi.org/10.1002/chin.200615242

    CAS  Google Scholar 

  9. Puterová, Z. and Krutošíková, A., Heterocyclic Compounds: Synthesis, Properties, and Applications, Nylund, K. and Johansson, P., Eds., New York: Nova Science, 2010, p. 1.

  10. Chaudhary, A., Jha, K.K., and Kumar, S., J. Adv. Sci. Res., 2012, vol. 3, p. 3.

    CAS  Google Scholar 

  11. Mishra, R., Sharma, P.K., Verma, P., and Mishra, I., Eur. Chem. Bull., 2016, vol. 5, p. 399. doi https://doi.org/10.17628/ECB.2016.5.399

    CAS  Google Scholar 

  12. Puterová, Z., Krutošíková, A., and Végh, D., Arkivoc, 2010, part (i), p. 209. doi https://doi.org/10.3998/ark.5550190.0011.105

  13. Nadeau, J.M. and Swager, T.M., Tetrahedron, 2004, vol. 60, p. 7141. doi https://doi.org/10.1016/j.tet.2004.06.016

    Article  CAS  Google Scholar 

  14. Raposo, M.M.M., Sousa, A.M.R.C., Kirsch, G., Cardoso, P., Belsley, M., de Matos Gomes, E., and Fonseca, A.M.C., Org. Lett., 2006, vol. 8, p. 3681. doi https://doi.org/10.1021/o1061277s

    Article  CAS  PubMed  Google Scholar 

  15. Pozo-Gonzalo, C., Pomposo, J.A., Alduncin, J.A., Salsamendi, M., Mikhaleva, A.I., Krivdin, L.B., and Trofimov, B.A., Electrochim. Acta, 2007, vol. 52, p. 4784. doi https://doi.org/10.1016/j.electacta.2007.01.050

    Article  CAS  Google Scholar 

  16. Pozo-Gonzalo, C., Salsamendi, M., Pomposo, J.A., Grande, H.-J., Schmidt, E.Yu., Rusakov, Yu.Yu., and Trofimov, B.A., Macromolecules, 2008, vol. 41, p. 6886. doi https://doi.org/10.1021/ma801190n

    Article  CAS  Google Scholar 

  17. Coelho, P.J., Cidália, M., Castro, R., Maurício, A., Fonseca, C., Manuela, M., and Raposo, M., Dyes Pigm., 2012, vol. 92, p. 745. doi https://doi.org/10.1016/j.dyepig.2011.06.019

    Article  CAS  Google Scholar 

  18. Rasmussen, S.C., Evenson, S.J., and McCausland, C.B., Chem. Commun., 2015, vol. 51, p. 4528. doi https://doi.org/10.1039/C4CC09206F

    Article  CAS  Google Scholar 

  19. Sabnis, R.W., Color. Technol., 2016, vol. 132, p. 49. doi https://doi.org/10.1007/978-3-319-52287-6_9

    Article  CAS  Google Scholar 

  20. Ontoria, J.M., Hernando, J.I.M., Malancona, S., Attenni, B., Stansfield, I., Conte, I., Ercolani, C., Habermann, J., Ponzi, S., and Di Filippo, M., Bioorg. Med. Chem. Lett., 2006, vol. 16, p. 4026. doi https://doi.org/10.1016/j.bmcl.2006.05.012

    Article  CAS  PubMed  Google Scholar 

  21. Hunter, G.A., McNab, H., and Withell, K., Synthesis, 2010, p. 1707. doi https://doi.org/10.1055/s-0029-1218735

  22. Blair, J.B., Marona-Lewicka, D., Kanthasamy, A., Lucaites, VL., Nelson, D.L., and Nichols, D.E., J. Med. Chem., 1999, vol. 42, p. 1106. doi https://doi.org/10.1021/jm980692q

    Article  CAS  PubMed  Google Scholar 

  23. Romagnoli, R., Baraldi, P.G., Cruz-Lopez, O., Tolomeo, M., Di Cristina, A., Pipitone, R.M., Grimaudo, S., Balzarini, J., Brancale, A., and Hamel, E., Bioorg. Med. Chem. Lett., 2011, vol. 21, p. 2746. doi https://doi.org/10.1016/j.bmcl.2010.11.083

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, H., Bednarz, M.S., Lim, N.-K., Hernandez, G., and Wu, W., Org. Lett., 2014, vol. 16, p. 2522. doi https://doi.org/10.1021/ol500895t

    Article  CAS  PubMed  Google Scholar 

  25. Sommen, G., Comel, A., and Kirsch, G., Tetrahedron Lett., 2002, vol. 43, p. 257. doi https://doi.org/10.1016/S0040-4039(01)02130-X

    Article  CAS  Google Scholar 

  26. Ilyin, A.P., Dmitrieva, I.G., Kustova, V.A., Manaev, A.V., and Ivachtchenko, A.V., J. Comb. Chem., 2007, vol. 9, p. 96. doi https://doi.org/10.1021/cc060091h

    Article  CAS  PubMed  Google Scholar 

  27. Lu, Z., Dai, P., Wang, C., Liang, M., Zong, X., Sun, Z., and Xue, S., Tetrahedron, 2016, vol. 72, p. 3204. doi https://doi.org/10.1016/j.tet.2016.04.044

    Article  CAS  Google Scholar 

  28. Malancona, S., Hernando, J.I.M., Attenni, B., Ontoria, J.M., and Narjes, F., Tetrahedron Lett., 2009, vol. 50, p. 1625. doi https://doi.org/10.1016/j.tetlet.2009.01.109

    Article  CAS  Google Scholar 

  29. Trofimov, B.A., Phosphorus, Sulfur Silicon Relat. Elem., 1994, vol. 95, p. 145. doi https://doi.org/10.1080/10426509408034207

    Article  Google Scholar 

  30. Abashev, G.G., Bushueva, A.Y., and Shklyaeva, E.V, Chem. Heterocycl. Compd., 2011, vol. 47, p. 130. doi https://doi.org/10.1007/s10593-011-0735-y

    Article  CAS  Google Scholar 

  31. Davis, R.A., Carroll, A.R., and Quinn, R.J., Aust. J. Chem., 2002, vol. 55, p. 789. doi https://doi.org/10.1071/CH02110

    Article  CAS  Google Scholar 

  32. Raposo, M.M.M., Sousa, A.M.R.C., Fonseca, A.M.C., and Kirsch, G., Tetrahedron, 2005, vol. 61, p. 8249. doi https://doi.org/10.1016/j.tet.2005.06.039

    Article  CAS  Google Scholar 

  33. Josey, A.D. and Jenner, E.L., J. Org. Chem., 1962, vol. 27, p. 2466. doi https://doi.org/10.1021/jo01054a042

    Article  CAS  Google Scholar 

  34. Lisowski, V., Léonce, S., Kraus-Berthier, L., Sopková-de Oliveira Santos, J., Pierré, A., Atassi, G., Caignard, D.-H., Renard, P., and Rault, S., J. Med. Chem., 2004, vol. 47, p. 1448. doi https://doi.org/10.1021/jm030961z

    Article  CAS  PubMed  Google Scholar 

  35. Messaoud, M.Y.A., Bentabed-Ababsa, G., Hedidi, M., Derdour, A., Chevallier, F., Halauko, Y.S., Ivashkevich, O.A., Matulis, V.E., Picot, L., Thiéry, V., Roisnel, T., Dorcet, V., and Mongin, F., Beilstein J. Org. Chem., 2015, vol. 11, p. 1475. doi https://doi.org/10.3762/bjoc.11.160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kneeteman, M.N., López Baena, A.F., Della Rosa, C., and Mancini, P.M.E., Int. Res. J. Pure Appl. Chem., 2015, vol. 8, p. 229 (article no. IRJPAC.2015.088). doi https://doi.org/10.9734/IRJPAC/2015/18867

    Article  CAS  Google Scholar 

  37. Nedolya, N.A., Tarasova, O.A., Albanov, A.I., and Trofimov, B.A., Eur. J. Org. Chem., 2018, p. 1953. doi https://doi.org/10.1002/ejoc.201800268

  38. Klyba, L.V., Nedolya, N.A., Sanzheeva, E.R., and Tarasova, O.A., Russ. J. Org. Chem., 2017, vol. 53, p. 913. doi https://doi.org/10.1134/S1070428017060161

    Article  CAS  Google Scholar 

  39. Nedolya, N.A., Tarasova, O.A., Albanov, A.I., and Trofimov, B.A., J. Org. Chem., 2017, vol. 82, p. 7519. doi https://doi.org/10.1021/acs.joc.7b01217

    Article  CAS  PubMed  Google Scholar 

  40. Zaikin, V.G., Varlamov, A.V., Mikaya, A.I., and Prostakov, N.S., Osnovy mass-spektrometrii organicheskikh soedinenii (Principles of Mass Spectrometry of Organic Compounds), Moscow: MAIK “Nauka/Interperiodika,” 2001, p. 152.

    Google Scholar 

  41. Vul’fson, N.S., Zaikin, V.G., and Mikaya, A.I., Mass-spektrometriya organicheskikh soedinenii (Mass Spectrometry of Organic Compounds), Moscow: Khimiya, 1986, p. 28.

    Google Scholar 

Download references

Acknowledgments

The study was performed using the equipment of the Baikal Joint Analytical Center (Siberian Branch, Russian Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Klyba.

Additional information

Russian Text © The Author(s), 2019, published in Zhurnal Organicheskoi Khimii, 2019, Vol. 55, No. 4, pp. 620–627.

For communication XVII, see [1].

Funding

This study was performed under financial support by the Russian Foundation for Basic Research (project no. 16-03-00234a).

Conflict of Interests

No conflict of interests is declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klyba, L.V., Nedolya, N.A., Sanzheeva, E.R. et al. Mass Spectra of New Heterocycles: XVIII. Electron Impact and Chemical Ionization Mass Spectra of Alkyl 5-Amino-3-methyl-4-(1H-pyrrol-1-yl)thiophene-2-carboxylates. Russ J Org Chem 55, 518–524 (2019). https://doi.org/10.1134/S1070428019040171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428019040171

Keywords

Navigation