Skip to main content
Log in

Neodecanoic Acid Diamides as Inhibitors of Acid Corrosion of Low-Carbon Steel

  • Applied Electrochemistry and Metal Corrosion Protection
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Neodecanoic acid diamides were prepared by a simple one-step procedure involving condensation of neodecanoic acid with diethylenetriamine, triethylenetetramine, and pentaethylenehexamine. The inhibiting effect of these diamides on the corrosion of St3 low-carbon steel in 2 М H2SO4 and in 1 and 5 М HCl was studied gravimetrically. All the compounds synthesized efficiently inhibit the steel corrosion with the degree of protection at room temperature of 94–95% in 2 М H2SO4 and 96–97% in 1 М HCl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Sehmi, A., Ouici, H.B., Guendouzi, A., Ferhat, M., Benali, O., and Boudjellal, F., J. Electrochem. Soc., 2020, vol. 167, no. 15, ID 155508. https://doi.org/10.1149/1945-7111/abab25

    Article  CAS  Google Scholar 

  2. Ivanov, E.S., Ingibitory korrozii v kislykh sredakh (Corrosion Inhibitors in Acid Media), Moscow: Metallurgiya, 1986, pp. 96–121.

    Google Scholar 

  3. Finšgar, M. and Jackson, J., Corros. Sci., 2014, vol. 86, pp. 17–41. https://doi.org/10.1016/j.corsci.2014.04.044

    Article  CAS  Google Scholar 

  4. Verma, D.K., Dewangan, Y., Dewangan, A.K., and Asatkar, A., J. Bio- Tribo-Corros., 2021, vol. 7, no. 1, ID 15. https://doi.org/10.1007/s40735-020-00447-7

    Article  Google Scholar 

  5. Zhang, J.T., Bai, Z.Q., Zhao, J., Feng, Y.R., and Wang, Y., Petrol. Sci. Technol., 2012, vol. 30, no. 17, pp. 1851–1861. https://doi.org/10.1080/10916466.2010.512884

    Article  CAS  Google Scholar 

  6. Patent US 2021/0115570 A1, Publ. 2021.

  7. Damborenea, J., Bastidas, J.M., and Vázquez, A.J., Electrochim. Acta, 1997, vol. 42, no. 3, pp. 455−459. https://doi.org/10.1016/S0013-4686(96)00250-2

    Article  Google Scholar 

  8. Yadav, M., Kumar, S., Sharma, U., and Yadav, P.N., J. Mater. Environ. Sci., 2013, vol. 4, no. 5, pp. 691–700. http://www.jmaterenvironsci.com/Journal/vol4-5.html.

    CAS  Google Scholar 

  9. Malinowski, S., Wróbel, M., and Woszuk, A., Materials, 2021, vol. 14, no. 20, ID 6197. https://doi.org/10.3390/ma14206197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Duda, Y., Govea-Rueda, R., Galicia, M., Beltrán, H.I., and Zamudio-Rivera, L.S., J. Phys. Chem. B, 2005, vol. 109, no. 47, pp. 22674–22684. https://doi.org/10.1021/jp0522765

    Article  CAS  PubMed  Google Scholar 

  11. Kousar, K., Dowhyj, M., Walczak, M.S., Ljungdahl, T., Wetzel, A., Oskarsson, H., Walton, A.S., Restuccia, P., Harrison, N.M., and Lindsay, R., Faraday Discuss., 2022, vol. 236, pp. 374–388. https://doi.org/10.1039/d1fd00106j

    Article  CAS  PubMed  Google Scholar 

  12. Jiang, Y.Y., Chen, Y., Ye, Z.Y., Chen, H., Zhang, Z., Zhang, J.Q., and Cao, C.N., Corrosion, 2013, vol. 69, no. 7, pp. 672–680. https://doi.org/10.5006/0740

    Article  CAS  Google Scholar 

  13. Elsharif, A.M., Abubshait, S.A., Abdulazeez, I., and Abubshait, H.A., Arab. J. Chem., 2020, vol. 13, no. 5, pp. 5363–5376. https://doi.org/10.1016/j.arabjc.2020.03.015

    Article  CAS  Google Scholar 

  14. Loto, C.A., Loto, R.T., and Joseph, O.O., S. Afr. J. Chem., 2017, vol. 70, no. 1, pp. 38–43.

    CAS  Google Scholar 

  15. Muthamma, K., Kumari, P., Lavanya, M., and Rao Suma, A., J. Bio- Tribo-Corros., 2021, vol. 7, no. 1, ID 10. https://doi.org/10.1007/s40735-020-00439-7

    Article  Google Scholar 

  16. Kuznetsov, Yu.I., Russ. Chem. Rev., 2004, vol. 73, no. 1, pp. 75−87. https://doi.org/10.1070/RC2004v073n01ABEH000864.

    Article  CAS  Google Scholar 

  17. Hrimla, M., Bahsis, L., Laamari, M.R., Julve, M., and Stiriba, S.E., Int. J. Mol. Sci., 2022, vol. 23, no. 1, ID 16. https://doi.org/10.3390/ijms23010016

    Article  CAS  Google Scholar 

  18. Chauhan, D.S., Verma, C., and Quraishi, M.A., J. Mol. Struct., 2021, vol. 1227, ID 129374. https://doi.org/10.1016/j.molstruc.2020.129374

    Article  CAS  Google Scholar 

  19. Yoo, S.H., Kim, Y.W., Chung, K., Baik, S.Y., and Kim, J.S., Corros. Sci., 2012, vol. 59, pp. 42−54. https://doi.org/10.1016/j.corsci.2012.02.011

    Article  CAS  Google Scholar 

  20. Bondareva, S.O., Nugumanov, T.R., Nazarov, I.S., and Murinov, Yu.I., Russ. J. Appl. Chem., 2019, vol. 92, no. 11, pp. 1531−1536. https://doi.org/10.1134/S1070427219110107

    Article  CAS  Google Scholar 

  21. Bondareva, S.O., Golubyatnikova, L.G., Khisamutdinov, R.A., and Murinov, Yu.I., Vestn. Bashkirsk. Univ., Khim., 2019, vol. 24, no. 2, pp. 367–370. https://www.elibrary.ru/mdhola.

    Article  Google Scholar 

  22. Garner, P.J. and Nunes, C.P., Rev. Port. Quim., 1973, vol. 15, no. 3, pp. 158−165.

    Google Scholar 

  23. Bergstedt, L. and Widmark, G., Acta Chem. Scand., 1970, vol. 24, pp. 2713–2723. https://doi.org/10.3891/acta.chem.scand.24-2713

    Article  CAS  Google Scholar 

  24. Al-Amiery, A.A., Kadhum, A.A.H., Kadihum, A., Mohamad, A.B., How, C.K., and Junaedi, S., Materials, 2014, vol. 7, no. 2, pp. 787−804. https://doi.org/10.3390/ma7020787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fouda, A.S., El-Desoky, H.S., Abdel-Galeil, M.M., and Mansour, D., Prot. Met. Phys. Chem. Surf., 2022, vol. 58, no. 1, pp. 151−167. https://doi.org/10.1134/S2070205122010105

    Article  CAS  Google Scholar 

  26. Resende, G.O., Teixeira, S.F., Figueiredo, I.F., Godoy, A.A., Lougon, D.J.F., Cotrim, B.A., and De Souza, F.C., Int. J. Electrochem., 2019, vol. 2019, ID 6759478. https://doi.org/10.1155/2019/6759478

    Article  CAS  Google Scholar 

  27. Bondareva, S.O. and Murinov, Yu.I., Russ. J. Appl. Chem., 2022, vol. 95, no. 2, pp. 256−263. https://doi.org/10.1134/S1070427222020045

    Article  CAS  Google Scholar 

  28. Flores-Frias, E.A., Gonzalez-Hernandez, A., Barba, V., Lopez-Sesenes, R., Landeros-Martinez, L.L., Flores-De los Rios, J.P., and Gonzalez-Rodriguez, J.G., Int. J. Corros. Scale Inhib., 2021, vol. 10, no. 3, pp. 1189–1212. https://doi.org/10.17675/2305-6894-2021-10-3-21

    Article  CAS  Google Scholar 

  29. Saeed, M.T., Anti-Corros. Meth. Mater., 2004, vol. 51, no. 6, pp. 389–398. https://doi.org/10.1108/00035590410560930

    Article  CAS  Google Scholar 

  30. Hameed, R.S.A., Alfakeer, M., and Abdallah, M., Surf. Eng. Appl. Electrochem., 2018, vol. 54, no. 6, pp. 599–606. https://doi.org/10.3103/S1068375518060054

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was performed using the equipment of the Chemistry Center for Shared Use, Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences and of the Agidel Regional Center for Shared Use, Ufa Federal Research Center, Russian Academy of Sciences.

Funding

The study was performed in accordance with government assignment no. 123011300044-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Bondareva.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 3, pp. 297–304, August, 2023 https://doi.org/10.31857/S0044461823030088

Publisher's Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondareva, S.O., Abdullin, M.F. & Nugumanov, T.R. Neodecanoic Acid Diamides as Inhibitors of Acid Corrosion of Low-Carbon Steel. Russ J Appl Chem 96, 324–331 (2023). https://doi.org/10.1134/S1070427223030084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427223030084

Keywords:

Navigation