Skip to main content
Log in

Preparation and Properties of Dialdehyddextran

  • Macromolecular Compounds and Polymeric Materials
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The homophase oxidation of dextran with sodium metaperiodate in an aqueous solution was studied, and samples of dialdehyde dextran with a degree of substitution of 0.12–1.24 were prepared. The effect of reaction temperature, oxidizing agent concentration, and pH of the reaction medium on the ratio of oxidized units of different chemical composition, molecular weight characteristics of the reaction products, and solubility of dialdehyde dextran samples was studied. The degradation rate of dialdehyde dextran in solutions at various pH values was estimated and it was shown that the hydrolysis rate in solutions with pH 2.0 enhances with increasing the number of aldehyde groups in the samples of oxidized dextran. In a solution with pH 3.5, the lowest degree of hydrolysis of dialdehyde dextran samples is detected, which does not depend on the content of aldehyde groups in their composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Maia, J., Evangelista, M.B., Gil, H., and Ferreira, L., Carbohydrates Applications in Medicine, Gil, M.H., Ed., India: Researсh Signpost, 2014.

    Google Scholar 

  2. Togo, A., Enomoto, Y., Takemura, A., and Iwata, T., J. Wood Sci., 2019, vol. 65, ID 66. https://doi.org/10.1186/s10086-019-1845-x

    Article  CAS  Google Scholar 

  3. Chandel, A.K.S., Nutan, B., Raval, I.H., Jewrajka, S.K., Biomacromolecules, 2018, vol. 19, no. 4, pp. 1142–1153. https://doi.org/10.1021/acs.biomac.8b00015

    Article  CAS  PubMed  Google Scholar 

  4. Ciobanu, C.S., Iconaru, S.L., Gyorgy, E., Radu, M., Costache, M., Dinischiotu, A., Predoi, D., Chem. Cent. J., 2012, vol. 6, ID 17. https://doi.org/10.1186/1752-153X-6-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Luana, C.A., Ribovski, L., Lins, P.M.P., Zucolotto, V., J. Mater. Chem. B, 2022, vol. 10, pp. 8282–8294. https://doi.org/10.1039/D2TB01296K

    Article  Google Scholar 

  6. Wasiak, I., Kulikowska, A., Janczewska, M., Magdalena, M., Cymerman, I.A., Nagalski, A., Peter, K., Szymanski, W., Tomasz, C., PLoS ONE, 2016, vol. 11, no. 1, ID e0146237 https://doi.org/10.1371/journal.pone.0146237

  7. Chimpibul, W., Nagashima, T., Hayashi, F., Nakajima, N., Hyon, S.H., and Matsumura, K., J. Polym. Sci. Part A: Polym. Chem., 2016, vol. 54, no. 14, pp. 2254–2260. https://doi.org/10.1002/pola.28099

    Article  CAS  Google Scholar 

  8. Berillo, D. and Volkova, N., J. Mater. Sci., 2014, vol. 49, pp. 4855–4868. https://doi.org/10.1007/s10853-014-8186-3

    Article  CAS  Google Scholar 

  9. Pan, J., Yuan, L., Guo, Ch., Geng, X., Fei, T., Fan, W., Li, Sh., Yuan, H., Yan, Z., Mo, X., J. Mater. Chem. B, 2014, vol. 2, pp. 8346–8360. https://doi.org/10.1039/C4TB01221F

    Article  CAS  PubMed  Google Scholar 

  10. Zhao, H. and Heindel, N.D., Pharm. Res., 1991, vol. 8, no. 3, pp. 400–402. https://doi.org/10.1023/a:1015866104055

    Article  CAS  PubMed  Google Scholar 

  11. Butrim, S.M., Bil’dyukevich, T.D., Butrim, N.S., and Yurkshtovich, T.L., Russ. J. Appl. Chem., 2002, vol. 75, no. 8, pp. 1320–1324. https://doi.org/10.1023/A:1020925414338

    Article  CAS  Google Scholar 

  12. State Pharmacopoeia of the Republic of Belarus. vol. 1, Buffer Solutions, 2016.

  13. Maia, J., Carvalho, R.A., Coelho, J.F., Simões, P.N., and Gil, M.H., Polymer, 2011, vol. 52, no. 2, pp. 258–265. https://doi.org/10.1016/j.polymer.2010.11.058

    Article  CAS  Google Scholar 

  14. Ishak, M.F. and Painter, T., Carbohydr. Res., 1978, vol. 64, pp. 189–197. https://doi.org/10.1371/journal.pone.0146237

    Article  CAS  Google Scholar 

  15. Zhbankov, R.G., Infrakrasnye spektry i struktura uglevodov (IR Spectra and Hydrocarbon Structure), Minsk: Nauka i tekhnika, 1972.

    Google Scholar 

Download references

Funding

The work was carried out within the framework of task 2.2.02.01 of the State Research Programs “Chemical processes, reagents and technologies, bioregulators and bioorgchemistry,” 2021–2025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Pristromova.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Zhurnal Prikladnoi Khimii, Nos. 11–12, pp. 1459–1467, August, 2022 https://doi.org/10.31857/S004446182211010X

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurkshtovich, T.L., Pristromova, Y.I., Golub, N.V. et al. Preparation and Properties of Dialdehyddextran. Russ J Appl Chem 95, 1800–1808 (2022). https://doi.org/10.1134/S1070427222120060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427222120060

Keywords:

Navigation